
The pi-Calculus (Part 1)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.uni-linz.ac.at

Wolfgang Schreiner http://www.risc.jku.at 1/26

The pi-Calculus

Process calculus developed in continuation of the work on CCS.

Robin Milner, Joachim Parrow, David Walker. A Calculus of Mobile

Processes. Information and Computation, 100:1–40, 1992.
Robin Milner. Elements of Interaction. Turing Award Lecture.
Communications of the ACM, 36(1):78–89, January 1993.
Robin Milner. The Polyadic π-calculus: a Tutorial. F.L. Bauer et al
(eds), Logic and Algebra of Specification, Springer 1993, pp. 203–246.

Designed to capture mobility.

Concurrent systems whose configuration may change.

Highly influential with many extensions and applications:

Abadi and Gordon (1997): Spi-calculus (cryptographic protocols).
Shapiro et al (2000): BioSPI (biological processes).
Formal modeling of web service architectures (WS-BPEL, . . .).
Semantics of object-oriented languages.
. . .

Wolfgang Schreiner http://www.risc.jku.at 2/26

1. CCS Revisited

2. From CCS to the π-Calculus

3. The π-Calculus

Wolfgang Schreiner http://www.risc.jku.at 3/26

A Reformulation of CCS

Names {a, b, . . .} and Co-names {ā, b̄, . . .}
Complement ā of a, ¯̄a = a.
Labels {a, ā, b, b̄, . . .}
~a = a1, . . . , an

Process Identifiers {A,B , . . .}
Defining Equation A(~a) := PA

PA is a process expression whose free names are included in ~a.

Concurrent Process Expressions

P ::= A〈a1, . . . , an〉 |
∑

i∈I

αi .Pi | P1|P2 | new a P

Summation
∑

i∈I αi .Pi with finite indexing set I
P1 + P2 + P3 =

∑
i∈{1,2,3} .Pi

0 =
∑

i∈∅ .Pi

Restriction new a P
Name a is bound (not free) in the restriction.

Wolfgang Schreiner http://www.risc.jku.at 4/26

Structural Congruence

Process Congruence: an equivalence relation ≃ on concurrent
process expressions is a process congruence, if P ≃ Q implies

α.P +M ≃ α.Q +M

new a P ≃ new a Q

P |R ≃ Q|R , R |P ≃ R |Q

Structural Congruence: the structural congruence ≡ is the process
congruence defined by the following equations:

1. Change of bound names (alpha-conversion).
2. Reordering of terms in a summation.
3. P |0 ≡ P , P |Q ≡ Q|P , P |(Q|R) ≡ (P |Q)|R .
4. new a (P |Q) ≡ P |new a Q, if a not free in P .

new a 0 ≡ 0, new a b P ≡ new b a P .
5. A〈~b〉 ≡ {~b/~a}PA, if A(~a) := PA.

Used in the definition of the possible process reactions.

Wolfgang Schreiner http://www.risc.jku.at 5/26

Standard Forms

Standard Form: a process expression

new ~a (M1 | . . . | Mn)

Each Mi is a non-empty sum.
If n = 0, the standard form is new ~a 0.
If ~a is empty, the standard form is M1 | . . . | Mn.

Theorem: Every process is structurally congruent to a standard form.

Wolfgang Schreiner http://www.risc.jku.at 6/26

Reactions

Reaction Relation →: set of those transitions that can be inferred
from the following rules:

TAU τ.P +M → P

REACT (a.P +M)|(ā.Q + N) → P |Q

PAR
P → P ′

P |Q → P ′|Q

RES
P → P ′

new a P → new a P ′

STRUCT
P → P ′

Q → Q ′
, if P ≡ Q and P ′ ≡ Q ′

The internal reactions within a process.

Wolfgang Schreiner http://www.risc.jku.at 7/26

Labelled Transitions

Transition Relation
α
→: set of transitions that can be inferred from

the following rules (where α is either a label λ or τ):

SUMt M + α.P + N
α
→ P

REACTt
P

λ
→ P ′ Q

λ̄
→ Q ′

P |Q
τ
→ P ′|Q ′

LPARt
P

α
→ P ′

P |Q
α
→ P ′|Q

RPARt
Q

α
→ Q ′

P |Q
α
→ P |Q ′

RESt
P

α
→ P ′

new a P
α
→ new a P ′

if α 6∈ {a, a′}

IDENTt
{~b/~a}PA

α
→ P ′

A〈~b〉
α
→ P ′

if A(~a) := PA

The external interactions with other processes.

Wolfgang Schreiner http://www.risc.jku.at 8/26

Relationships

Structural Congruence Respects Transition: If P
α
→ P ′ and P ≡ Q,

then there exists some Q ′ such that Q
α
→ Q ′ and P ′ ≡ Q ′.

Structurally congruent process expressions have the same transitions.

Reaction Agrees with τ -Transition: P → P ′ if and only if there

exists some P ′′ such that P
τ
→ P ′′ and P ′′ ≡ P ′.

→ corresponds to the silent transition
τ

→ (modulo congruence).

Theory of strong bisimilarity/equivalence and weak
bisimilarity/observation equivalence as already discussed.

Wolfgang Schreiner http://www.risc.jku.at 9/26

1. CCS Revisited

2. From CCS to the π-Calculus

3. The π-Calculus

Wolfgang Schreiner http://www.risc.jku.at 10/26

What is Mobility?

What entities do move in what space?

1. Processes move in the physical space of computing sites.
2. Processes move in the virtual space of linked processes.
3. Links move in the virtual space of linked processes.
4. . . .

The π-Calculus is based on option (3).
The location of a process in a virtual space of processes is determined
by its links to other processes.

The neighbors of a process are those processes that it can talk to.
Movement of a process can be described by the movement of links.
Option (2) can be thus reduced to option (3).

Other calculi address option (1) more directly.

Ambient Calculus (Cardelli and Gordon, 1998): processes move
between ambients (locations of activities).

The π-calculus describes a logical (not physical) view of mobility.
Wolfgang Schreiner http://www.risc.jku.at 11/26

Mobility in CCS

S := new c (A|C) | B

A and C share an internal port c .

A and B communicate with the external world via ports a and b.

C

A Ba b

c

How may the shape of S change by process transitions?

Wolfgang Schreiner http://www.risc.jku.at 12/26

Mobility in CCS

A := (a.new d (A|A′)) + c .A′′

A may interact with environment at a.

A then splits into A and A′ sharing an internal port d .

A receives a service request at a and generates a deputy A′ to which
this task is delegated (e.g. a multi-threaded web server).

C

A Ba b

c

c

d

A′

A component may generate new components.

Wolfgang Schreiner http://www.risc.jku.at 13/26

Mobility in CCS

A′ := c .0

A′ and C may communicate via c .

A′ then dies.

A′ has performed the assigned task.

C

A Ba b

c

A component may disappear.

Wolfgang Schreiner http://www.risc.jku.at 14/26

Limitations of CCS

S := new c (A|C) | B

How to achieve the following transition?

C

A B
a b

c

C

A B
a b

c

It is not possible to create new links between existing components.

Wolfgang Schreiner http://www.risc.jku.at 15/26

An Example of Mobility

Moving cars connected by wireless links to transmitters.

Transmitters connected by fixed wires to a central control.

Wireless connection of a car may be handed over from one
transmitter to another.

Signal to original transmitter has faded by movement of car.

T TT

Car CarCar

T TT

Car CarCar

ControlControl

Virtual movement of links triggered by physical movement of cars.

Wolfgang Schreiner http://www.risc.jku.at 16/26

A π-Calculus Model

System with one car and two transmitters.

Control1

gain1

talk1

switch1

lose2

lose1 gain2

Control2

gain1 lose2

lose1 gain2

talk2

switch2

Trans Idtrans

Car Car

Idtrans Trans

System :=
new talk1, switch1, gain1, lose1, talk2, switch2, gain2, lose2

(Car〈talk1, switch1〉|Trans〈talk1, switch1, gain1, lose1〉|
Idtrans〈gain2, lose2〉|Control1).

Descriptions of car and transmitters parameterized over current links.
Wolfgang Schreiner http://www.risc.jku.at 17/26

A π-Calculus Model (Contd)

Car(talk , switch) := talk.Car〈talk , switch〉+ switch(t, s).Car 〈t, s〉.

Trans(talk , switch, gain, lose) :=
talk.Trans〈talk, switch, gain, lose〉+

lose(t, s).switch〈t, s〉.Idtrans〈gain, lose〉.

Idtrans(gain, lose) := gain(t, s).Trans〈t, s, gain, lose〉.

Control1 := lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2.

Control2 := lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1.

Link names may be transmitted as messages; received link names may be
used for sending messages.

Wolfgang Schreiner http://www.risc.jku.at 18/26

1. CCS Revisited

2. From CCS to the π-Calculus

3. The π-Calculus

Wolfgang Schreiner http://www.risc.jku.at 19/26

The π-Calculus

Names: {x , y , z , . . .}.

Action Prefixes: π ::= x(y) | x〈y〉 | τ .

x(y) . . . receive y along x .
x〈y〉 . . . send y along x .
τ . . . unobservable action.

π-Calculus Process Expressions:

P ::=
∑

i∈I

πi .Pi | P1|P2 | new a P | !P

Summation
∑

i∈I αi .Pi with finite indexing set I .
Restriction new y and input action x(y) both bind name y .
Replication !P instead of process identifiers and defining equations.

Monadic version of calculus (each message contains exactly one name).
Wolfgang Schreiner http://www.risc.jku.at 20/26

Illustrating Reactions

P := new z ((x̄〈y〉+ z(w).w̄ 〈y〉) | x(u).ū〈v〉 | x̄〈z〉).

Two possible reactions P → P1 and P → P2

P1 = new z (0 | ȳ〈v〉 | x̄〈z〉).
P2 = new z ((x̄〈y〉 + z(w).w̄〈y〉) | z̄〈v〉 | 0).

One possible reaction P2 → P3

P3 = new z (v̄〈y〉 | 0 | 0).

No other reactions are possible.

Wolfgang Schreiner http://www.risc.jku.at 21/26

Structural Congruence

Process Congruence: an equivalence relation ≃ on π-calculus
process expressions is a process congruence, if P ≃ Q implies

π.P +M ≃ π.Q +M

new x P ≃ new x Q

P |R ≃ Q|R , R |P ≃ R |Q
!P ≃ !Q

Structural Congruence: the structural congruence ≡ is the process
congruence defined by the following equations:
1. Change of bound names (alpha-conversion).
2. Reordering of terms in a summation.
3. P |0 ≡ P , P |Q ≡ Q|P , P |(Q|R) ≡ (P |Q)|R .
4. new x (P |Q) ≡ P |new x Q, if x not free in P .

new x 0 ≡ 0, new x y P ≡ new y x P .
5. !P ≡ P | !P

Alpha conversions can also occur for names bound by an input action; the
replication operator can generate arbitrarily many instances of a process.

Wolfgang Schreiner http://www.risc.jku.at 22/26

Standard Forms

Standard Form: a process expression

new ~a (M1 | . . . | Mm | !Q1 | . . . | !Qn)

Each Mi is a non-empty sum, each Qn is in standard form.
If m = n = 0, the standard form is new ~a 0.
If ~a is empty, the standard form is M1 | . . . | Mm | !Q1 | . . . | !Qn.

Theorem: Every process is structurally congruent to a standard form.

Wolfgang Schreiner http://www.risc.jku.at 23/26

Reactions

Reaction Relation →: set of those transitions that can be inferred
from the following rules:

TAU τ.P +M → P

REACT (x(y).P +M)|(x̄〈z〉.Q + N) → {z/y}P |Q

PAR
P → P ′

P |Q → P ′|Q

RES
P → P ′

new x P → new x P ′

STRUCT
P → P ′

Q → Q ′
, if P ≡ Q and P ′ ≡ Q ′

The internal reactions within a process (the external interactions will be
formalized later).

Wolfgang Schreiner http://www.risc.jku.at 24/26

The Polyadic π-Calculus

Allow action prefixes with multiple messages.
x(y1 . . . yn).P and x̄〈z1, . . . , zn〉.Q

Obvious encoding in monadic π-calculus:
x(y1). · · · .x(yn).P and x̄〈z1〉. · · · .x̄〈zn〉.Q

Obvious encoding is wrong:
x(y1, y2).P | x̄〈z1, z2〉.0 | x̄〈z ′1, z

′
2〉.0 should only have transitions to

{z1/y1, z2/y2}P and {z ′1/y1, z
′
2/y2}P

x(y1).x(y2).P | x̄〈z1〉.x̄〈z2〉.0 | x̄〈z ′1〉.x̄〈z
′
2〉.0 also has transitions to

{z1/y1, z
′
1/y2}P and {z ′1/y1, z1/y2}P.

Correct encoding in monadic π-calculus:
x(w).w(y1). · · · .w(yn).P and new w (x̄〈w〉.w̄ 〈z1〉. · · · .w̄〈zn〉.Q)

Interference on channel x is avoided by sending a fresh name w along
x and then sending the components zi one by one along w .

We can use the the polyadic π-calculus in applications but use the
monadic π-calculus as the formal basis.

Wolfgang Schreiner http://www.risc.jku.at 25/26

Recursive Definitions

Use recursively defined process identifiers.

Recursive definition A(~x) := QA whose scope is process
P = . . .A〈~y 〉 . . .A〈~z〉 . . .

Translated using replication as follows:

Invent a new name, say a, to stand for A.
Translate every process R to a process R̂ by replacing every call A〈~w〉
by the output action ā〈~w〉.
Replace the definition of A and P by

new a (P̂ | !a(~x).Q̂A)

Can be easily generalized to multiple recursive definitions.

Example: S(x) := c̄(x).S(x) and R := c(x).R in S(y)|R

new s r (s̄〈y〉|r̄ | !s(x).c̄〈x〉.s̄〈x〉 | !r .c(x).r̄)

We can also use recursive process definitions in applications.

Wolfgang Schreiner http://www.risc.jku.at 26/26

	CCS Revisited
	From CCS to the -Calculus
	The -Calculus

