Hemmecke (10:15)

Hemmecke (11:00)

Popov

Matrikel

SKZ

i
<
o}
»n

E

]
(%]

Klausur 2
Berechenbarkeit und Komplexitat

13. Januar 2017
Part 1 | RecFun2016

Let f1, fo : N —p N be two partial functions that are defined as follows:
z+1

B if x is odd,
file) = {undeﬁned {

otherwise
Let g(z) = fi(f2(2)) and h(z) = fi(4z + 1) + f2(4z).

2

undefined

if x is even,

fa(x)

otherwise.

Is f1 primitive recursive?
Is fo p-recursive?

Is g p-recursive?

g : N —=p Nis a function that is nowhere defined, so the representation
g(z) = (ut)(x) (where t(y,z) = s(p3(y,x)) is clearly primitive
recursive) proves that g is u-recursive.

In general, the composition of p-recursive functions is p-recursive.

Is h primitive recursive?

Even though f; and f5 are not primitive recursive (since they are not
total functions), their combination (as defined here) is. f; is only called
with an odd number as argument and f> is only called with an even
number. So h(x) = 4z + 2+ 1622 and that is clearly primitive recursive.

Can every total function of type N — N be computed by a LOOP program?

From the Ackermann function ack one can easily construct a total
function of a(x) = ack(y, z) where y and z are such that 0 < z < 27,

log, (z+1)
2

recursive, because it basically is the Ackermann function. The y and z
are the “upper” and “lower” half of the binary representation of x.

Part 2 | Grammar2016

Consider the grammar G = (N,X, P,S) where N = {S}, ¥ = {a,b}, P =
{S — aBbA,aB — abA,bA — baB, A — aa, B — bb}.

x=2"y+ z for n = [}.The function «(z) is not primitive

Is ababababab € L(G)?

A word in L(G) always ends in aa or bb.

Is the grammar G right linear?

Is there a linear bounded automaton M such that L(M) = L(G)?

G is a context-sensitive grammar.

Does for every grammar G’ (N, X, P, S") with ¥ = {0,1} exist a
Turing machine M over the alphabet ¥’ such that L(M) = L(G")?

Let L’ be a recursively enumerable language that is not recursive.
Then there exists a grammar G’ sucht that L' = L(G’). However, L’ is
not recursively enumerable, so there does not exist a Turing machine
M with L(M) = L(G') = L’

iL/

[y
o)
<
D
wn

[y
[y

p—
[\]

p—
w

14

yes

|| | |] | =
| ||| ||
<
)
[72]

< I

[¢]
w0

Part 3 | Decidable2016

Consider the following problems. In each problem below, the input of the prob-
lem is the code (M) of a Turing machine M with input alphabet {0,1}.
Problem A: Does L(M) contain the word 011000001111%

Problem W: Does L(M) contain more than 2017 words?

Problem C: Is L(M) a context-sensitive language?

Problem Z: Does M always halt when 0 is under the head?

Is A semi-decidable?

Simulate M on the input word 011000001111. If M halts in an
accepting state, then 011000001111 € L(M). For semi-decidability that
is enough.

Is W semi-decidable?

Simulate M in such a way that every possible word is checked. If that
simulation finds 2018 words as accepted by M, the simulator can stop
and answer YES.

Is C decidable?
Rice Theorem.
Is Z decidable?

The code (M) of a Turing machine M = (Q,T',, %, d, ¢1, F) is a finite
string and encodes (among other things) the transition function §. A
Turing machine that decides Z has to check whether (g,0) is undefined
for all ¢ € Q. Since domain(d) C @ x I' is a finite set, this is a check
can be decided in finitely many steps from the encoding (M) without
the need of simulating M.

Let P,P' C {0,1}" and let M be a Turing machine that for every w € P
computes a w' € P’ and for every w ¢ P computes a word w' ¢ P’.
Assume P is not decidable. Can it be concluded that P’ is not decidable?

We have P(w) <= P’'(f(w)) where f is the “computable function”
(that is required in Definition 42) computed by M. Thus P < P’.
Apply Theorem 32 (lecture notes).

Part 4 ‘ Comple:m'ty?OIb"
Let f(n) = 3"(2" + n2017), g(n) = 6" +n - 3", and h(n) = 23" log, n.

Is it true that f(n) = O(g(n))?
Is it true that loga(h(n)
Is it true that g(n) = O

. 1 _ 2017
Is it true that - —O(o)?

S~ —
>=
—~
3
~—

X

Part 5 \Loop Whilegom\

Let P be a LOOP program that computes a primitive recursive function f :
N — N with time complexity T'(n) € ©(n?°'7) where x1 = n is the input of the
program P and xqg its output. Note that the time complexity T'(n) of a LOOP
program s given by the number of executed statements during the run of the
program with input n. Furthermore, let W be the following WHILE program
that computes a (partial) function g : N —p N.

while z, do while 1 do P end; z, := z9 — 1 end;

[19] [no]

[20[yes [|

yes

Can it be concluded that g is LOOP computable?

If f(n) =2 for every n € N, then W only terminates for input z; = 0,
i.e., W does not compute a total function. In this case g is not LOOP
computable, i.e., we have a counterexample.

Is the problem “n € range(g)” semi-decidable?

(Formally: Let b : N — {0,1}" be the (Turing-computable) function that
takes a natural number n as input and returns the binary representation
of n. Is the set R = {b(n) € {0,1}" | n € range(g) } semi-decidable?)

We construct a Turing machine D that takes a word w as input and
simulates the WHILE program W (in “parallel” for every natural
number n). If z, is the output of the computation of W on n, it
computes b(z,) and compares the result with w. If it is equal, then D
stops with answer YES, otherwise it continues the search.

Can W be rewritten into another WHILE program W' that computes the
same function g such that W' uses only one while loop?

Transform W into Kleene normalform.

Let Wp be the above WHILE program instantiated with a given program P.
Does there exist a LOOP program P with time complexity ©(n?°'7) such
that L = {0°|3n € N: Wp computes for input n output e } is reqular?

Let P’ be any LOOP program that runs with complexity ©(n2°'7).

Choose as P the program . Then g(n) =0 for all n € N

and thus L = {e} is regular.

Let @ be the following LOOP program.

loop ©, do loop z, do zy := zy + 1 end end;
1 = ®my + 1;
loop ©, do loop z; do xy := x9 + 1 end end

Is the complexity of program Q (depending on input x1 :=n) in O(n?)?

After the first loop we have £o = n2. In the third line the output is
computed as zo = (n? + 1)2. So there must have been O(n?*) executions
of the statement zg := xg + 1.

Part 6 ‘ OpenComputabz'lity?Olb"

Let T'(n) be the number of multiplications executed during the run of the follow-
ing program while evaluating g(n,1).

function g(n, x)
if n==0 then
return x
else
if odd(n) then
return g(n-1, x+x)
else
k = floor(n/2)
return gk, x) * gk, x+1)

5] 1 Point |

Compute T(9).

T(9) =
9(93 1) _9(872)
29(4’2)*9(473)
= g<252) & 9(273) *9(2)3) *9(274)
=9(1,2) % g(1,3) * g(1,3) * g(1,4) * g(1,3) x g(1,4) * g(1,4) x g(1,5)
=4%x6x6%x8%x6x8%x8x%10
So, T'(9) = 1.

Determine T'(n) asymptotically for large n. Use ©-notation.
T(n) =

A recursion formula for T"is T'(n) = 27'(| §]) + 1, i.e., according to the
notation in Theorem 49 (Master theorem) we have a = 2, b = 2, and
f(n) =1€ O(nlos22=¢) for e = 1. Thus T(n) = O(n'°%22) = O(n).

