Gruppe	Hemr	Hemmecke (10:15)Hemmecke (11:00)Popov									
Name				Matrikel					SKZ		
		K	lausur 2	2							
		$\mathbf{Berechenbarke}_{13.}$	eit und Januar 201	Kom	ole	xit	ät				
		Part 1 RecFun2016 Let $f_1, f_2 : \mathbb{N} \to_P \mathbb{N}$ be two partial	functions th	nat are defin	ned as	s foll	ows:				
		$f_1(x) = \begin{cases} x+1 & \text{if } x \text{ is odd,} \\ undefined & otherwise \end{cases}$	f_2	$(x) = \begin{cases} x^2\\ und \end{cases}$	lefine	i ed d	f x is otheru	ever vise.	n,		
		Let $g(x) = f_1(f_2(x))$ and $h(x) = f_1(f_2(x))$	$f_1(4x+1) +$	$f_2(4x).$							
1	no	Is f_1 primitive recursive?									
2 ye	s	Is $f_2 \mu$ -recursive?									
3 ye	s	Is $g \mu$ -recursive?									
		$g: \mathbb{N} \to_P \mathbb{N}$ is a function tha $g(x) = (\mu t)(x)$ (where $t(y, x)$ recursive) proves that g is μ - In general, the composition of	t is nowhere $= s(p_2^2(y, x))$ recursive. f μ -recursive	defined, so) is clearly e functions :	the r prim is μ -r	repre itive recur	senta sive.	tion			
4 ye	s	Is h primitive recursive?									
		Even though f_1 and f_2 are n total functions), their combin with an odd number as argun number. So $h(x) = 4x + 2 + 3$	ot primitive nation (as de- ment and f_2 $16x^2$ and that	recursive (s fined here) is only call t is clearly	since is. f_1 ed wi primi	they ₁ is o ith a itive	are r only con n eve recur	not alled n sive.			
5	no] Can every total function of t	$pe \mathbb{N} \to \mathbb{N} \ b$	e computed	by a	LOC	P pro	ogran	n?		
		From the Ackermann function function of $\alpha(x) = \operatorname{ack}(y, z)$ where $x = 2^n y + z$ for $n = \left\lceil \frac{\log_2(x+1)}{2} \right\rceil$ recursive, because it basically are the "upper" and "lower" h	n ack one ca where y and $\frac{y}{2}$. The func y is the Acke half of the bi	In easily con- z are such to tion $\alpha(x)$ is ermann func- nary repres	nstruc that s not ction. entat	t a $0 \le 2$ prim The	total $z < 2^{\circ}$ nitive e y an of x.	n, nd z			
		Part 2 Grammar2016 Consider the grammar $G = (N, \{S \rightarrow aBbA, aB \rightarrow abA, bA \rightarrow baB\}$	$\Sigma, P, S)$ when $B, A \rightarrow aa, B$	$re \ N = \{S \\ \rightarrow bb\}.$	δ}, Σ		$\{a,b\}$, P	=		
6	no] Is ababababab $\in L(G)$?									
		A word in $L(G)$ always ends	in <i>aa</i> or <i>bb</i> .								
7	no	Is the grammar G right linea	r?								
8 ye	s] Is there a linear bounded aut	$omaton \ M \ s$	uch that L(<i>M</i>) =	= L(0	G)?				
		G is a context-sensitive gram	mar.								
9	no] Does for every grammar G' Turing machine M over the	$= (N', \Sigma', u)$ $alphabet \Sigma'$	P',S') with such that L	Σ' (M)	$= \frac{\{0\}}{L(0)}$	$\overline{G')}?$	exist	a		
		Let L' be a recursively enum Then there exists a grammar not recursively enumerable, s M with $L(M) = \overline{L(G')} = \overline{L'}$.	erable langu G' sucht th o there does	age that is at $L' = L(C$ s not exist a	not r G'). I L Turi	ecurs Howe ing n	sive. ever, 7 nachir	$\overline{L'}$ is ne			

Part 3 Decidable2016

Consider the following problems. In each problem below, the input of the problem is the code $\langle M \rangle$ of a Turing machine M with input alphabet $\{0,1\}$. Problem A: Does L(M) contain the word 011000001111? Problem W: Does L(M) contain more than 2017 words? Problem C: Is L(M) a context-sensitive language? Problem Z: Does M always halt when 0 is under the head?

10 yes	Is A semi-decidable?
	Simulate M on the input word 011000001111. If M halts in an accepting state, then $011000001111 \in L(M)$. For semi-decidability that is enough.
11 yes	$Is \; W \; semi-decidable?$
	Simulate M in such a way that every possible word is checked. If that simulation finds 2018 words as accepted by M , the simulator can stop and answer YES.
12 no	Is C decidable?
	Rice Theorem.
13 yes	Is Z decidable?
	The code $\langle M \rangle$ of a Turing machine $M = (Q, \Gamma, \sqcup, \Sigma, \delta, q_1, F)$ is a finite string and encodes (among other things) the transition function δ . A Turing machine that decides Z has to check whether $(q, 0)$ is undefined for all $q \in Q$. Since domain $(\delta) \subseteq Q \times \Gamma$ is a finite set, this is a check can be decided in finitely many steps from the encoding $\langle M \rangle$ without the need of simulating M .
14 yes	Let $P, P' \subseteq \{0, 1\}^*$ and let M be a Turing machine that for every $w \in P$ computes a $w' \in P'$ and for every $w \notin P$ computes a word $w' \notin P'$. Assume P is not decidable. Can it be concluded that P' is not decidable?
	We have $P(w) \iff P'(f(w))$ where f is the "computable function" (that is required in Definition 42) computed by M. Thus $P \leq P'$. Apply Theorem 32 (lecture notes).
	Part 4 Complexity2016 Let $f(n) = 3^n (2^n + n^{2017})$, $g(n) = 6^{n+1} + n \cdot 3^n$, and $h(n) = 2^{3n} \log_2 n$.

15	yes	
16	yes	
17	yes	
18		no

Is it true that $f(n) = \Theta(g(n))$?

- Is it true that $log_2(h(n)) = O(f(n))$?
- Is it true that g(n) = O(h(n))?

Part 5 Loop While 2016

Let P be a LOOP program that computes a primitive recursive function $f : \mathbb{N} \to \mathbb{N}$ with time complexity $T(n) \in \Theta(n^{2017})$ where $x_1 = n$ is the input of the program P and x_0 its output. Note that the time complexity T(n) of a LOOP program is given by the number of executed statements during the run of the program with input n. Furthermore, let W be the following WHILE program that computes a (partial) function $g : \mathbb{N} \to_P \mathbb{N}$.

while x_1 do while x_1 do P end; $x_1 := x_0 - 1$ end;

19 no	Can it be concluded that g is LOOP computable?
	If $f(n) = 2$ for every $n \in \mathbb{N}$, then W only terminates for input $x_1 = 0$, i. e., W does not compute a total function. In this case g is not LOOP computable, i. e., we have a counterexample.
20 yes	Is the problem " $n \in \operatorname{range}(g)$ " semi-decidable? (Formally: Let $b : \mathbb{N} \to \{0,1\}^*$ be the (Turing-computable) function that takes a natural number n as input and returns the binary representation of n . Is the set $R = \{b(n) \in \{0,1\}^* \mid n \in \operatorname{range}(g)\}$ semi-decidable?)
	We construct a Turing machine D that takes a word w as input and simulates the WHILE program W (in "parallel" for every natural number n). If z_n is the output of the computation of W on n , it computes $b(z_n)$ and compares the result with w . If it is equal, then D stops with answer YES, otherwise it continues the search.
21 yes	Can W be rewritten into another WHILE program W' that computes the same function g such that W' uses only one while loop?
	Transform W into Kleene normalform.
22 yes	Let W_P be the above WHILE program instantiated with a given program P . Does there exist a LOOP program P with time complexity $\Theta(n^{2017})$ such that $L = \{ 0^e \exists n \in \mathbb{N} : W_P \text{ computes for input } n \text{ output } e \}$ is regular?
	Let P' be any LOOP program that runs with complexity $\Theta(n^{2017})$. Choose as P the program $P'; x_0 := 0$. Then $g(n) = 0$ for all $n \in \mathbb{N}$ and thus $L = \{\varepsilon\}$ is regular.
23 no	Let Q be the following LOOP program.
	$egin{array}{rcccccccccccccccccccccccccccccccccccc$
	Is the complexity of program Q (depending on input $x_1 := n$) in $O(n^2)$?
	After the first loop we have $x_0 = n^2$. In the third line the output is computed as $x_0 = (n^2 + 1)^2$. So there must have been $O(n^4)$ executions of the statement $x_0 := x_0 + 1$.

Part 6 | OpenComputability2016 |

Let T(n) be the number of multiplications executed during the run of the following program while evaluating g(n, 1).

```
function g(n, x)
    if n==0 then
        return x
    else
        if odd(n) then
        return g(n-1, x+x)
        else
            k = floor(n/2)
            return g(k, x) * g(k, x+1)
```

24 1 Point

Compute
$$T(9)$$
.
 $T(9) =$

$$9) =$$

g(9,1) = g(8,2)= g(4,2) * g(4,3) $=g(2,2)\ast g(2,3)\ast g(2,3)\ast g(2,4)$ $=g(1,2)\ast g(1,3)\ast g(1,3)\ast g(1,4)\ast g(1,3)\ast g(1,4)\ast g(1,4)\ast g(1,4)\ast g(1,5)$ = g(0,4) * g(0,6) * g(0,6) * g(0,8) * g(0,6) * g(0,8) * g(0,8) * g(0,8) * g(0,10)= 4 * 6 * 6 * 8 * 6 * 8 * 8 * 10

So, T(9) = 7.

25 1 Point

Determine T(n) asymptotically for large n. Use Θ -notation. T(n) =

A recursion formula for T is $T(n) = 2T(\lfloor \frac{n}{2} \rfloor) + 1$, i. e., according to the notation in Theorem 49 (Master theorem) we have a = 2, b = 2, and $f(n) = 1 \in O(n^{(\log_2 2) - \varepsilon})$ for $\varepsilon = \frac{1}{2}$. Thus $T(n) = \Theta(n^{\log_2 2}) = \Theta(n)$.