
Gruppe Hemmecke (10:15) Hemmecke (11:00) Popov

Name Matrikel SKZ

Klausur 2

Berechenbarkeit und Komplexität
13. Januar 2017

Part 1 RecFun2016
Let f1, f2 : N→P N be two partial functions that are de�ned as follows:

f1(x) =

{
x+ 1 if x is odd,

unde�ned otherwise
f2(x) =

{
x2 if x is even,

unde�ned otherwise.

Let g(x) = f1(f2(x)) and h(x) = f1(4x+ 1) + f2(4x).

1 no Is f1 primitive recursive?

2 yes Is f2 µ-recursive?

3 yes Is g µ-recursive?

g : N→P N is a function that is nowhere de�ned, so the representation
g(x) = (µt)(x) (where t(y, x) = s(p22(y, x)) is clearly primitive
recursive) proves that g is µ-recursive.
In general, the composition of µ-recursive functions is µ-recursive.

4 yes Is h primitive recursive?

Even though f1 and f2 are not primitive recursive (since they are not
total functions), their combination (as de�ned here) is. f1 is only called
with an odd number as argument and f2 is only called with an even
number. So h(x) = 4x+ 2 + 16x2 and that is clearly primitive recursive.

5 no Can every total function of type N→ N be computed by a LOOP program?

From the Ackermann function ack one can easily construct a total
function of α(x) = ack(y, z) where y and z are such that 0 ≤ z < 2n,

x = 2ny + z for n =
⌈
log2(x+1)

2

⌉
.The function α(x) is not primitive

recursive, because it basically is the Ackermann function. The y and z
are the �upper� and �lower� half of the binary representation of x.

Part 2 Grammar2016
Consider the grammar G = (N,Σ, P, S) where N = {S}, Σ = {a, b}, P =
{S → aBbA, aB → abA, bA→ baB,A→ aa,B → bb}.

6 no Is ababababab ∈ L(G)?

A word in L(G) always ends in aa or bb.

7 no Is the grammar G right linear?

8 yes Is there a linear bounded automaton M such that L(M) = L(G)?

G is a context-sensitive grammar.

9 no Does for every grammar G′ = (N ′,Σ′, P ′, S′) with Σ′ = {0, 1} exist a

Turing machine M over the alphabet Σ′ such that L(M) = L(G′)?

Let L′ be a recursively enumerable language that is not recursive.
Then there exists a grammar G′ sucht that L′ = L(G′). However, L′ is
not recursively enumerable, so there does not exist a Turing machine
M with L(M) = L(G′) = L′.



Part 3 Decidable2016
Consider the following problems. In each problem below, the input of the prob-
lem is the code 〈M〉 of a Turing machine M with input alphabet {0, 1}.
Problem A: Does L(M) contain the word 011000001111?
Problem W: Does L(M) contain more than 2017 words?
Problem C: Is L(M) a context-sensitive language?
Problem Z: Does M always halt when 0 is under the head?

10 yes Is A semi-decidable?

Simulate M on the input word 011000001111. If M halts in an
accepting state, then 011000001111 ∈ L(M). For semi-decidability that
is enough.

11 yes Is W semi-decidable?

Simulate M in such a way that every possible word is checked. If that
simulation �nds 2018 words as accepted by M , the simulator can stop
and answer YES.

12 no Is C decidable?

Rice Theorem.

13 yes Is Z decidable?

The code 〈M〉 of a Turing machine M = (Q,Γ,t,Σ, δ, q1, F ) is a �nite
string and encodes (among other things) the transition function δ. A
Turing machine that decides Z has to check whether (q, 0) is unde�ned
for all q ∈ Q. Since domain(δ) ⊆ Q× Γ is a �nite set, this is a check
can be decided in �nitely many steps from the encoding 〈M〉 without
the need of simulating M .

14 yes Let P, P ′ ⊆ {0, 1}∗ and let M be a Turing machine that for every w ∈ P
computes a w′ ∈ P ′ and for every w 6∈ P computes a word w′ 6∈ P ′.
Assume P is not decidable. Can it be concluded that P ′ is not decidable?

We have P (w) ⇐⇒ P ′(f(w)) where f is the �computable function�
(that is required in De�nition 42) computed by M . Thus P ≤ P ′.
Apply Theorem 32 (lecture notes).

Part 4 Complexity2016

Let f(n) = 3n(2n + n2017), g(n) = 6n+1 + n · 3n, and h(n) = 23n log2 n.

15 yes Is it true that f(n) = Θ(g(n))?

16 yes Is it true that log2(h(n)) = O(f(n))?

17 yes Is it true that g(n) = O(h(n))?

18 no Is it true that 1
n = O

(
2017
n2

)
?

Part 5 LoopWhile2016

Let P be a LOOP program that computes a primitive recursive function f :
N → N with time complexity T (n) ∈ Θ(n2017) where x1 = n is the input of the
program P and x0 its output. Note that the time complexity T (n) of a LOOP
program is given by the number of executed statements during the run of the
program with input n. Furthermore, let W be the following WHILE program
that computes a (partial) function g : N→P N.

while x 1 do while x 1 do P end ; x 1 := x 0 − 1 end ;



19 no Can it be concluded that g is LOOP computable?

If f(n) = 2 for every n ∈ N, then W only terminates for input x1 = 0,
i. e., W does not compute a total function. In this case g is not LOOP
computable, i. e., we have a counterexample.

20 yes Is the problem �n ∈ range(g)� semi-decidable?

(Formally: Let b : N → {0, 1}∗ be the (Turing-computable) function that
takes a natural number n as input and returns the binary representation
of n. Is the set R =

{
b(n) ∈ {0, 1}∗

∣∣n ∈ range(g)
}
semi-decidable?)

We construct a Turing machine D that takes a word w as input and
simulates the WHILE program W (in �parallel� for every natural
number n). If zn is the output of the computation of W on n, it
computes b(zn) and compares the result with w. If it is equal, then D
stops with answer YES, otherwise it continues the search.

21 yes Can W be rewritten into another WHILE program W ′ that computes the
same function g such that W ′ uses only one while loop?

Transform W into Kleene normalform.

22 yes Let WP be the above WHILE program instantiated with a given program P .

Does there exist a LOOP program P with time complexity Θ(n2017) such
that L = { 0e | ∃n ∈ N : WP computes for input n output e } is regular?

Let P ′ be any LOOP program that runs with complexity Θ(n2017).

Choose as P the program P ′;x0 := 0 . Then g(n) = 0 for all n ∈ N
and thus L = {ε} is regular.

23 no Let Q be the following LOOP program.

loop x 1 do loop x 1 do x 0 := x 0 + 1 end end ;
x 1 := x 0 + 1;
loop x 1 do loop x 1 do x 0 := x 0 + 1 end end

Is the complexity of program Q (depending on input x1 := n) in O(n2)?

After the �rst loop we have x0 = n2. In the third line the output is
computed as x0 = (n2 + 1)2. So there must have been O(n4) executions
of the statement x0 := x0 + 1.

Part 6 OpenComputability2016

Let T (n) be the number of multiplications executed during the run of the follow-
ing program while evaluating g(n, 1).

function g(n, x)

if n==0 then

return x

else

if odd(n) then

return g(n-1, x+x)

else

k = floor(n/2)

return g(k, x) * g(k, x+1)



24 1 Point Compute T (9).
T (9) =

g(9, 1) = g(8, 2)

= g(4, 2) ∗ g(4, 3)

= g(2, 2) ∗ g(2, 3) ∗ g(2, 3) ∗ g(2, 4)

= g(1, 2) ∗ g(1, 3) ∗ g(1, 3) ∗ g(1, 4) ∗ g(1, 3) ∗ g(1, 4) ∗ g(1, 4) ∗ g(1, 5)

= g(0, 4) ∗ g(0, 6) ∗ g(0, 6) ∗ g(0, 8) ∗ g(0, 6) ∗ g(0, 8) ∗ g(0, 8) ∗ g(0, 10)

= 4 ∗ 6 ∗ 6 ∗ 8 ∗ 6 ∗ 8 ∗ 8 ∗ 10

So, T (9) = 7.

25 1 Point Determine T (n) asymptotically for large n. Use Θ-notation.
T (n) =

A recursion formula for T is T (n) = 2T (bn2 c) + 1, i. e., according to the
notation in Theorem 49 (Master theorem) we have a = 2, b = 2, and
f(n) = 1 ∈ O(n(log2 2)−ε) for ε = 1

2 . Thus T (n) = Θ(nlog2 2) = Θ(n).


