| Gruppe | Hemmecke (10:15) | Hemmecke (11:00) | Popov | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | | Matrikel | | | | | | SKZ | |

Klausur 2

Berechenbarkeit und Komplexität

13. Januar 2017

Part 1 RecFun2016
Let $f_{1}, f_{2}: \mathbb{N} \rightarrow_{P} \mathbb{N}$ be two partial functions that are defined as follows:
$f_{1}(x)=\left\{\begin{array}{ll}x+1 & \text { if } x \text { is odd }, \\ \text { undefined } & \text { otherwise }\end{array} \quad f_{2}(x)= \begin{cases}x^{2} & \text { if } x \text { is even }, \\ \text { undefined } & \text { otherwise } .\end{cases}\right.$
Let $g(x)=f_{1}\left(f_{2}(x)\right)$ and $h(x)=f_{1}(4 x+1)+f_{2}(4 x)$.

$\mathbf{1}$		no
$\mathbf{2}$	yes	
$\mathbf{3}$	yes	

Is f_{1} primitive recursive?
Is $f_{2} \mu$-recursive?
Is $g \mu$-recursive?
$g: \mathbb{N} \rightarrow_{P} \mathbb{N}$ is a function that is nowhere defined, so the representation $g(x)=(\mu t)(x)$ (where $t(y, x)=s\left(p_{2}^{2}(y, x)\right)$ is clearly primitive recursive) proves that g is μ-recursive.
In general, the composition of μ-recursive functions is μ-recursive.

$\mathbf{5}$		no Can every total function of type $\mathbb{N} \rightarrow \mathbb{N}$ be computed by a LOOP program?

From the Ackermann function ack one can easily construct a total function of $\alpha(x)=\operatorname{ack}(y, z)$ where y and z are such that $0 \leq z<2^{n}$, $x=2^{n} y+z$ for $n=\left\lceil\frac{\log _{2}(x+1)}{2}\right]$.The function $\alpha(x)$ is not primitive recursive, because it basically is the Ackermann function. The y and z are the "upper" and "lower" half of the binary representation of x.

Part 2 Grammar2016
Consider the grammar $G=(N, \Sigma, P, S)$ where $N=\{S\}, \Sigma=\{a, b\}, P=$ $\{S \rightarrow a B b A, a B \rightarrow a b A, b A \rightarrow b a B, A \rightarrow a a, B \rightarrow b b\}$.

$\mathbf{6}$		no \quad Is ababababab $\in L(G) ?$

A word in $L(G)$ always ends in $a a$ or $b b$.

Is the grammar G right linear?
Is there a linear bounded automaton M such that $L(M)=L(G)$?
G is a context-sensitive grammar.
Does for every grammar $G^{\prime}=\left(N^{\prime}, \Sigma^{\prime}, P^{\prime}, S^{\prime}\right)$ with $\Sigma^{\prime}=\{0,1\}$ exist a Turing machine M over the alphabet Σ^{\prime} such that $L(M)=\overline{L\left(G^{\prime}\right)}$?

Let L^{\prime} be a recursively enumerable language that is not recursive.
Then there exists a grammar G^{\prime} sucht that $L^{\prime}=L\left(G^{\prime}\right)$. However, $\overline{L^{\prime}}$ is not recursively enumerable, so there does not exist a Turing machine M with $L(M)=\overline{L\left(G^{\prime}\right)}=\overline{L^{\prime}}$.

Part 3 Decidable2016
Consider the following problems. In each problem below, the input of the prob-
lem is the code $\langle M\rangle$ of a Turing machine M with input alphabet $\{0,1\}$.
Problem A: Does $L(M)$ contain the word 011000001111?
Problem W: Does $L(M)$ contain more than 2017 words?
Problem C: Is $L(M)$ a context-sensitive language?
Problem Z: Does M always halt when 0 is under the head?

Part 4 Complexity2016
Let $f(n)=3^{n}\left(2^{n}+n^{2017}\right), g(n)=6^{n+1}+n \cdot 3^{n}$, and $h(n)=2^{3 n} \log _{2} n$.

$\mathbf{1 5}$	yes	
$\mathbf{1 6}$	yes	
$\mathbf{1 7}$	yes	
$\mathbf{1 8}$		no

Is it true that $f(n)=\Theta(g(n))$?
Is it true that $\log _{2}(h(n))=O(f(n))$?
Is it true that $g(n)=O(h(n))$?
Is it true that $\frac{1}{n}=O\left(\frac{2017}{n^{2}}\right)$?
Part 5 LoopWhile2016
Let P be a LOOP program that computes a primitive recursive function f : $\mathbb{N} \rightarrow \mathbb{N}$ with time complexity $T(n) \in \Theta\left(n^{2017}\right)$ where $x_{1}=n$ is the input of the program P and x_{0} its output. Note that the time complexity $T(n)$ of a LOOP program is given by the number of executed statements during the run of the program with input n. Furthermore, let W be the following WHILE program that computes a (partial) function $g: \mathbb{N} \rightarrow_{P} \mathbb{N}$.
while x_{1} do while x_{1} do P end; $x_{1}:=x_{0}-1$ end;

If $f(n)=2$ for every $n \in \mathbb{N}$, then W only terminates for input $x_{1}=0$, i. e., W does not compute a total function. In this case g is not LOOP computable, i. e., we have a counterexample.

| $\mathbf{2 0}$ | yes \quad Is the problem " $n \in$ range (g) " semi-decidable? |
| :--- | :--- | :--- | :--- |

(Formally: Let $b: \mathbb{N} \rightarrow\{0,1\}^{*}$ be the (Turing-computable) function that takes a natural number n as input and returns the binary representation of n. Is the set $R=\left\{b(n) \in\{0,1\}^{*} \mid n \in \operatorname{range}(g)\right\}$ semi-decidable?)

We construct a Turing machine D that takes a word w as input and simulates the WHILE program W (in "parallel" for every natural number n). If z_{n} is the output of the computation of W on n, it computes $b\left(z_{n}\right)$ and compares the result with w. If it is equal, then D stops with answer YES, otherwise it continues the search.

21 yes Can W be rewritten into another WHILE program W^{\prime} that computes the same function g such that W^{\prime} uses only one while loop?

Transform W into Kleene normalform.
$\mathbf{2 2}$ yes Let W_{P} be the above WHILE program instantiated with a given program P. Does there exist a LOOP program P with time complexity $\Theta\left(n^{2017}\right)$ such that $L=\left\{0^{e} \mid \exists n \in \mathbb{N}: W_{P}\right.$ computes for input n output $\left.e\right\}$ is regular?

Let P^{\prime} be any LOOP program that runs with complexity $\Theta\left(n^{2017}\right)$.
Choose as P the program $P^{\prime} ; x_{0}:=0$. Then $g(n)=0$ for all $n \in \mathbb{N}$ and thus $L=\{\varepsilon\}$ is regular.

Let Q be the following LOOP program.

```
loop \(x_{1}\) do loop \(x_{1}\) do \(x_{0}:=x_{0}+1\) end end;
\(x_{1}:=x_{0}+1\);
loop \(x_{1}\) do loop \(x_{1}\) do \(x_{0}:=x_{0}+1\) end end
```

Is the complexity of program Q (depending on input $x_{1}:=n$) in $O\left(n^{2}\right)$?
After the first loop we have $x_{0}=n^{2}$. In the third line the output is computed as $x_{0}=\left(n^{2}+1\right)^{2}$. So there must have been $O\left(n^{4}\right)$ executions of the statement $x_{0}:=x_{0}+1$.

Part 6 OpenComputability2016

Let $T(n)$ be the number of multiplications executed during the run of the following program while evaluating $g(n, 1)$.

```
function g(n, x)
    if n==0 then
        return x
    else
        if odd(n) then
            return g(n-1, x+x)
        else
            k = floor(n/2)
            return g(k, x)* g(k, x+1)
```

$$
\begin{aligned}
g(9,1) & =g(8,2) \\
& =g(4,2) * g(4,3) \\
& =g(2,2) * g(2,3) * g(2,3) * g(2,4) \\
& =g(1,2) * g(1,3) * g(1,3) * g(1,4) * g(1,3) * g(1,4) * g(1,4) * g(1,5) \\
& =g(0,4) * g(0,6) * g(0,6) * g(0,8) * g(0,6) * g(0,8) * g(0,8) * g(0,10) \\
& =4 * 6 * 6 * 8 * 6 * 8 * 8 * 10 \\
\text { So, } T(9) & =7 .
\end{aligned}
$$

$\mathbf{2 5} 1$ Point Determine $T(n)$ asymptotically for large n. Use Θ-notation. $T(n)=$

A recursion formula for T is $T(n)=2 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+1$, i. e., according to the notation in Theorem 49 (Master theorem) we have $a=2, b=2$, and $f(n)=1 \in O\left(n^{\left(\log _{2} 2\right)-\varepsilon}\right)$ for $\varepsilon=\frac{1}{2}$. Thus $T(n)=\Theta\left(n^{\log _{2} 2}\right)=\Theta(n)$.

