Problems Solved:

| 41 | 42 | 43 | 44 | 45

Name:

Matrikel-Nr.:

Problem 41. Prove or disprove the following:

- 1. $O(g(n))^2 = O(g(n)^2)$
- 2. $2^{O(g(n))} = O(2^{g(n)})$

Hint: First transform above equations into a form that does not involve the O-notation on the left hand side, then prove the correctness of the resulting formulas.

Problem 42.

- 1. Consider the probability space $\Omega = \{0,1\}^n$ of all strings over $\{0,1\}$ of length n where each string occurs with the same probability 2^{-n} . Let $X : \Omega \to \mathbb{N}$ be a random variable that gives the position of the first occurrence of the symbol 1 in a string, if 1 occurs at all. For completeness, we also define that $X(0^n) = 0$. Positions are numbered from 1 to n. Give a (not necessarily closed form) term for the expected value E(X) of the random variable X and justify your answer.
- 2. Evaluate the sum

$$S = \sum_{k=1}^{n} \frac{1}{2^k} k$$

in *closed form*, i.e., find a formula for the sum which does not involve a summation sign.

Hint: Using your high-school knowledge about geometric series, compute a closed form of the function

$$F(z) := \sum_{k=0}^{n} \left(\frac{z}{2}\right)^{k}.$$

and compute its first derivative F'(z). The desired closed form is then S = F'(1). Why?

Note that the index for the geometric series starts at k = 0.

Problem 43. Let $M = (Q, \Gamma, \sqcup, \Sigma, \delta, q_0, F)$ be a Turing machine with $Q = \{q_0, q_1\}, \Sigma = \{0, 1\}, \Gamma = \{0, 1, \sqcup\}, F = \{q_1\}$ and the following transition function δ :

1. Determine the (worst-case) time complexity T(n) and the (worst-case) space complexity S(n) of M.

Berechenbarkeit und Komplexität, WS2016

- 2. Determine the average-case time complexity $\overline{T}(n)$ and the average-case space complexity $\overline{S}(n)$ of M. (Assume that all 2^n input words of length n occur with the same probability, i.e., $1/2^n$.)
- 3. Bonus: Using results from Problem 42, express all answers in closed form, i.e., without the use of the summation symbol.

Problem 44. Let T(n) be the number of multiplications carried out by the following Java program.

```
1
      int a, b, i, product, max;
2
      max = 1;
3
      a = 0;
      while (a < n) {
 4
        b = a;
5
6
        while (b <= n) {
7
          product = 1;
8
          i = a;
9
          while (i < b) {
            product = product * factors[i];
10
            i = i + 1; \}
11
12
          if (product > max) { max = product; }
          b = b + 1; }
13
14
        a = a + 1; \}
```

1. Determine T(n) exactly as a nested sum.

2. Determine T(n) asymptotically using Θ -Notation. In the derivation, you may use the asymptotic equation

$$\sum_{k=0}^{n} k^{m} = \Theta(n^{m+1}) \text{ for } n \to \infty$$

for fixed $m \ge 0$ which follows from approximating the sum by an integral:

$$\sum_{k=0}^{n} k^{m} \simeq \int_{0}^{n} x^{m} \, dx = \frac{1}{m+1} n^{m+1} = \Theta(n^{m+1})$$

Problem 45. Let T(n) be given by the recurrence relation

$$T(n) = 3T(\lfloor n/2 \rfloor).$$

and the initial value T(1) = 1. Show that $T(n) = O(n^{\alpha})$ with $\alpha = \log_2(3)$. Hint: Define $P(n) : \iff T(n) \le n^{\alpha}$. Show that P(n) holds for all $n \ge 1$ by induction on n. It is not necessary to restrict your attention to powers of two.

Berechenbarkeit und Komplexität, WS2016