Problems Solved:

41	42	43	44	45

Name:

Matrikel-Nr.:

Problem 41. Prove or disprove the following:

1. $O(g(n))^{2}=O\left(g(n)^{2}\right)$
2. $2^{O(g(n))}=O\left(2^{g(n)}\right)$

Hint: First transform above equations into a form that does not involve the O-notation on the left hand side, then prove the correctness of the resulting formulas.

Problem 42.

1. Consider the probability space $\Omega=\{0,1\}^{n}$ of all strings over $\{0,1\}$ of length n where each string occurs with the same probability 2^{-n}. Let $X: \Omega \rightarrow \mathbb{N}$ be a random variable that gives the position of the first occurrence of the symbol 1 in a string, if 1 occurs at all. For completeness, we also define that $X\left(0^{n}\right)=0$. Positions are numbered from 1 to n. Give a (not necessarily closed form) term for the expected value $E(X)$ of the random variable X and justify your answer.
2. Evaluate the sum

$$
S=\sum_{k=1}^{n} \frac{1}{2^{k}} k
$$

in closed form, i.e., find a formula for the sum which does not involve a summation sign.
Hint: Using your high-school knowledge about geometric series, compute a closed form of the function

$$
F(z):=\sum_{k=0}^{n}\left(\frac{z}{2}\right)^{k} .
$$

and compute its first derivative $F^{\prime}(z)$. The desired closed form is then $S=F^{\prime}(1)$. Why?
Note that the index for the geometric series starts at $k=0$.

Problem 43. Let $M=\left(Q, \Gamma, \sqcup, \Sigma, \delta, q_{0}, F\right)$ be a Turing machine with $Q=$ $\left\{q_{0}, q_{1}\right\}, \Sigma=\{0,1\}, \Gamma=\{0,1, \sqcup\}, F=\left\{q_{1}\right\}$ and the following transition function δ :

δ	0	1	\sqcup
q_{0}	$q_{0} 0 R$	$q_{1} 1 R$	-
q_{1}	-	-	-

1. Determine the (worst-case) time complexity $T(n)$ and the (worst-case) space complexity $S(n)$ of M.
2. Determine the average-case time complexity $\bar{T}(n)$ and the average-case space complexity $\bar{S}(n)$ of M. (Assume that all 2^{n} input words of length n occur with the same probability, i.e., $1 / 2^{n}$.)
3. Bonus: Using results from Problem 42 express all answers in closed form, i.e., without the use of the summation symbol.

Problem 44. Let $T(n)$ be the number of multiplications carried out by the following Java program.

```
int a, b, i, product, max;
max = 1;
a = 0;
while ( a < n ) {
    b = a;
    while (b <= n) {
        product = 1;
        i = a;
        while (i < b) {
                product = product * factors[i];
                i = i + 1; }
            if (product > max) { max = product; }
            b = b + 1; }
    a = a + 1; }
```

1. Determine $T(n)$ exactly as a nested sum.
2. Determine $T(n)$ asymptotically using Θ-Notation. In the derivation, you may use the asymptotic equation

$$
\sum_{k=0}^{n} k^{m}=\Theta\left(n^{m+1}\right) \text { for } n \rightarrow \infty
$$

for fixed $m \geq 0$ which follows from approximating the sum by an integral:

$$
\sum_{k=0}^{n} k^{m} \simeq \int_{0}^{n} x^{m} d x=\frac{1}{m+1} n^{m+1}=\Theta\left(n^{m+1}\right)
$$

Problem 45. Let $T(n)$ be given by the recurrence relation

$$
T(n)=3 T(\lfloor n / 2\rfloor) .
$$

and the initial value $T(1)=1$. Show that $T(n)=O\left(n^{\alpha}\right)$ with $\alpha=\log _{2}(3)$.
Hint: Define $P(n): \Longleftrightarrow T(n) \leq n^{\alpha}$. Show that $P(n)$ holds for all $n \geq 1$ by induction on n. It is not necessary to restrict your attention to powers of two.

