Gruppe	Hemmecke (10:15)	Hemmecke (11:00)	Hemmecke (11:00) Popov			
Name		Matrikel		SKZ		

Klausur 1 Berechenbarkeit und Komplexität 18. November 2016

Part 1 NFSM2016

Let N be the nondeterministic finite state machine

 $(\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \nu, \{q_0\}, \{q_1, q_3\}),$

whose transition function ν is given below.

1 no	Is $10010011001101 \in L(N)$?		
	A word $w \in L(N)$ with $ w > 1$ ends either with 11 or 10, but never with 01.		
2 yes	$Is \ 00110010 \in L(N)$?		
	Follow the states $q_0, q_3, q_2, q_0, q_1, q_3, q_2, q_0, q_3$.		
3 no	Is $L(N)$ finite?		
4 yes	Does there exist a regular expression r such that $L(r) = \overline{L(N)} = \{0,1\}^* \setminus L(N)$?		
	L(N) is regular and so is its complement.		
5 yes	Is $\overline{L(N)}$ recursively enumerable?		
	$L(N)$ is regular. Hence, $\overline{L(N)}$ is regular, and thus also recursively enumerable.		
6 yes	Is there a deterministic finite state machine M with less than 2016 states such that $L(M) = L(N)$?		
	According to the subset construction, there must be a DFSM with at most $2^4 = 16$ states.		
7 yes 8 yes	Is there an enumerator Turing machine G such that $Gen(G) = L(N)$? Does there exists a deterministic finite state machine D such that $L(D) = L(N) \circ \overline{L(N)}$?		
	$L(N)$ and $\overline{L(N)}$ are both regular. Concatenation of two regular		

languages gives a regular language.

Part 2 Computable2016

Let M be a Turing machine such that it accepts a word, if and only if it is a palindrome. A palindrome is a word that can be read the same way from either

direction, left-to-right or right-to-left. For example, noon, civic, madam, and radar are palindromes.

9 yes	Is $L(M)$ recursively enumerable?		
10 yes	Is $L(M)$ recursive?		
11 no	Is $L(M)$ finite?		
	There can be arbitrarily large palindromes.		
12 no	Let L be a recursively enumerable language. Can it be concluded that $L(M) \cap L$ is recursive?		
	Intersection of recursive and recursively enumerable languages is recursively enumerable but not necessarily recursive.		
13 no	Is every μ -recursive function also a primitive recursive function?		
14 no	Does there exist a μ -recursive function that is not WHILE computable?		
15 yes	Is every primitive recursive function also Turing-computable?		
Par Let	et 3 Pumping2016 $L_1 = \{ a^n b^m a^{n-m} \mid n, m \in \mathbb{N}, n > m, n < 2016 \} \subset \{a, b\}^*,$ $L_2 = \{ a^m b^n a^{n+m} \mid m, n \in \mathbb{N}, m > n > 1 \} \subset \{a, b\}^*.$		
16 yes	Is there a deterministic finite state machine M such that $L(M) = L_1$?		
	The language L_1 is finite and thus regular.		
17 no 18 yes 19 yes	Is there a deterministic finite state machine M' such that $L(M') = L_2$? Is there an enumerator Turing machine G such that $Gen(G) = L_2$? Is there a deterministic finite state machine D such that $L(D) = L_1 \cap L_2$?		
	The language $L_1 \cap L_2$ is finite and thus regular.		
20 yes	Is there a language L such that $L \cup L_2$ is regular?		
	Yes. Take as L the complement of L_2 .		

Part 4 WhileLoop2016 Let a function $f : \mathbb{N}^3 \to \mathbb{N}$ be defined by

$$f(x, y, z) := \begin{cases} y & \text{if } x = y, \\ z & \text{if } x < y, \\ 0 & \text{otherwise.} \end{cases}$$

Let f' be defined like f, but with the exception that f' is undefined if one of the arguments is equal to 2016.

21	yes	
22		no
23	yes	

Is f a LOOP computable function? Is f' a LOOP computable function? Is f' a WHILE computable function?

Part 5 | *Open2016*

((2 points))Let $N = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite state machine with $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{0, 1\}, S = \{q_0\}, F = \{q_0, q_3\}, and transition function <math>\delta$ as given below.

1. Let X_i denote the regular expression for the language accepted by N when starting in state q_i .

Write down an equation system for X_0, \ldots, X_3 .

2. Give a regular expression r such that L(r) = L(N) (you may apply Arden's Lemma to the result of 1).

 $X_0 = 1X_1 + (0+1)X_2 + \varepsilon$ $X_1 = 0X_2$ $X_2 = 1X_3$ $X_3 = 1X_1 + \varepsilon$ $r = 1(011)^*01 + (0+1)(110)^*1$ $= ((0+1) + 10)(110)^*1 + \varepsilon$