| Gruppe | Hemmecke (10:15) | Hemmecke (11:00) | Popov | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Name | | Matrikel | | | | | | SKZ | |

Klausur 1
 Berechenbarkeit und Komplexität

18. November 2016

Part 1 NFSM2016
Let N be the nondeterministic finite state machine

$$
\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\}, \nu,\left\{q_{0}\right\},\left\{q_{1}, q_{3}\right\}\right),
$$

whose transition function ν is given below.

$\mathbf{1}$		no \quad Is $10010011001101 \in L(N) ?$

A word $w \in L(N)$ with $|w|>1$ ends either with 11 or 10 , but never with 01 .

| $\mathbf{2}$ | yes \quad Is $00110010 \in L(N)$? |
| :--- | :--- | :--- |

Follow the states $q_{0}, q_{3}, q_{2}, q_{0}, q_{1}, q_{3}, q_{2}, q_{0}, q_{3}$.

$\mathbf{3}$		no
$\mathbf{4}$	yes	

Is $L(N)$ finite?
Does there exist a regular expression r such that $L(r)=\overline{L(N)}=\{0,1\}^{*} \backslash$ $L(N)$?
$L(N)$ is regular and so is its complement.

$\mathbf{5}$	yes	

$L(N)$ is regular. Hence, $\overline{L(N)}$ is regular, and thus also recursively enumerable.

| $\mathbf{6}$ | yes | \quad Is there a deterministic finite state machine M with less than 2016 states |
| :--- | :--- | :--- | such that $L(M)=L(N)$?

According to the subset construction, there must be a DFSM with at most $2^{4}=16$ states.

$\mathbf{7}$	yes	
$\mathbf{8}$	yes	

Is there an enumerator Turing machine G such that $G e n(G)=L(N)$?
Does there exists a deterministic finite state machine D such that $L(D)=$ $L(N) \circ \overline{L(N)}$?
$L(N)$ and $\overline{L(N)}$ are both regular. Concatenation of two regular languages gives a regular language.

Part 2 Computable2016
Let M be a Turing machine such that it accepts a word, if and only if it is a palindrome. A palindrome is a word that can be read the same way from either
direction, left-to-right or right-to-left. For example, noon, civic, madam, and radar are palindromes.

$\mathbf{9}$	yes	
$\mathbf{1 0}$	yes	
$\mathbf{1 1}$		no

Is $L(M)$ recursively enumerable?
Is $L(M)$ recursive?
Is $L(M)$ finite?
There can be arbitrarily large palindromes.

12		no

Let L be a recursively enumerable language. Can it be concluded that $L(M) \cap L$ is recursive?

Intersection of recursive and recursively enumerable languages is recursively enumerable but not necessarily recursive.

$\mathbf{1 3}$		no
$\mathbf{1 4}$		no
$\mathbf{1 5}$	yes	

Is every μ-recursive function also a primitive recursive function?
Does there exist a μ-recursive function that is not WHILE computable? Is every primitive recursive function also Turing-computable?

Part $3 \longdiv { \text { Pumping2016 } }$
Let

$$
\begin{aligned}
L_{1} & =\left\{a^{n} b^{m} a^{n-m} \mid n, m \in \mathbb{N}, n>m, n<2016\right\} \subset\{a, b\}^{*}, \\
L_{2} & =\left\{a^{m} b^{n} a^{n+m} \mid m, n \in \mathbb{N}, m>n>1\right\} \subset\{a, b\}^{*} .
\end{aligned}
$$

| $\mathbf{1 6}$ | yes | \quad Is there a deterministic finite state machine M such that $L(M)=L_{1}$? |
| :--- | :--- | :--- | :--- |

The language L_{1} is finite and thus regular.

17		no
$\mathbf{1 8}$	yes	
$\mathbf{1 9}$	yes	

Is there a deterministic finite state machine M^{\prime} such that $L\left(M^{\prime}\right)=L_{2}$?
Is there an enumerator Turing machine G such that $\operatorname{Gen}(G)=L_{2}$?
Is there a deterministic finite state machine D such that $L(D)=L_{1} \cap L_{2}$?
The language $L_{1} \cap L_{2}$ is finite and thus regular.

$\mathbf{2 0}$	yes	\quad Is there a language L such that $L \cup L_{2}$ is regular?

Yes. Take as L the complement of L_{2}.

Part 4 WhileLoop2016
Let a function $f: \mathbb{N}^{3} \rightarrow \mathbb{N}$ be defined by

$$
f(x, y, z):= \begin{cases}y & \text { if } x=y \\ z & \text { if } x<y \\ 0 & \text { otherwise }\end{cases}
$$

Let f^{\prime} be defined like f, but with the exception that f^{\prime} is undefined if one of the arguments is equal to 2016.

$\mathbf{2 1}$	yes	
$\mathbf{2 2}$		no
$\mathbf{2 3}$	yes	

Is f a LOOP computable function?
Is f^{\prime} a LOOP computable function?
Is f^{\prime} a WHILE computable function?
Part $5 \longdiv { \text { Open2016 } }$
((2 points))
Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a nondeterministic finite state machine with $Q=$ $\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Sigma=\{0,1\}, S=\left\{q_{0}\right\}, F=\left\{q_{0}, q_{3}\right\}$, and transition function δ as given below.

1. Let X_{i} denote the regular expression for the language accepted by N when starting in state q_{i}.
Write down an equation system for X_{0}, \ldots, X_{3}.
2. Give a regular expression r such that $L(r)=L(N)$ (you may apply Arden's Lemma to the result of 1).

$$
\begin{aligned}
X_{0} & =1 X_{1}+(0+1) X_{2}+\varepsilon \\
X_{1} & =0 X_{2} \\
X_{2} & =1 X_{3} \\
X_{3} & =1 X_{1}+\varepsilon \\
r & =1(011)^{*} 01+(0+1)(110)^{*} 1 \\
& =((0+1)+10)(110)^{*} 1+\varepsilon
\end{aligned}
$$

