Problems Solved:

31 | 32 | 33 | 34 | 35

Name:

Matrikel-Nr.:

Problem 31. Let $M = (Q, \Gamma, \sqcup, \Sigma, \delta, q_1, F)$ be a Turing maching with $\Sigma = \{0, 1\}, \Gamma = \{0, 1, \sqcup\}, Q = \{q_1, \ldots, q_n\}, F = \{q_2\}$, and transition function δ . We denote the symbols $0, 1, \sqcup$ in this order by X_1, X_2, X_3 and the head movement direction L, R by D_1, D_2 . An operation $\delta(q_i, X_j) = (q_k, X_l, D_m)$ shall be coded as $0^i 10^j 10^k 10^l 10^m$. The Turing maschine M itself shall be coded as

 $111code_1 11code_2 \dots 11code_r 111$

where each $code_1$ up to $code_r$ encode the operations given by δ . We denote such a code of a Turing machine M by [M]. Note that this encoding is different from the code $\langle M \rangle$ that is given in the lecture notes.

- 1. Let $w \in \Sigma^*$. Is it decidable whether w is the code of a Turing machine?
- 2. Is there a Turing machine U_{ε} that takes an arbitrary word $w \in \Sigma^*$ as input, checks whether this word is the code of a Turing machine and, if yes, simulates the behaviour of the respective Turing machine when started on the empty word?
- 3. Is it decidable whether there is a Turing machine U_{ε} as described in the previous question?
- 4. If the answer to the second question is "yes", is it decidable whether such a Turing machine U_{ε} halts on every word $w \in \Sigma^*$ that is the code of a Turing machine.
- 5. Optional: If the answer to the second question is "yes", is it decidable whether such a Turing machine U_{ε} halts on every word $w \in \Sigma^*$ that is **not** the code of a Turing machine.

Give reasonable arguments for your answers. Informal reasoning is enough, but simply stating "yes" or "no" does not count as a solution of this exercise.

Problem 32. Describe (informally) a Turing machine H that generates the the following language

 $L_h = \{ \langle M \rangle w \mid M \text{ is a Turing machine and } M \text{ halts on } w \},\$

i.e., $L_h = Gen(H)$.

You do not have to give an explicit definition of such a machine, but you must clearly describe how such a machine can in principle work, i.e., use higher level constructs to describe the "algorithm" that such a machine represents.

Problem 33. Show that the Acceptance Problem is reducible to the restricted Halting problem.

Problem 34. Show that there is no Turing machine P that for an arbitrary Turing machine M decides whether for some n > 0 it holds $0^n \in L(M) \subseteq \{0,1\}^*$.

Berechenbarkeit und Komplexität, WS2016

Problem 35. Let M_0, M_1, M_2, \ldots be a list of all Turing machines with alphabet $\Sigma = \{0, 1\}$ such that the function $i \mapsto \langle M_i \rangle$ is computable. Let $w_i := 10^i 10^i 1$ for all natural numbers i. Let $A := \{w_i \mid i \in \mathbb{N} \land w_i \in L(M_i)\}$ and $\overline{A} = \Sigma^* \setminus A$.

- (a) Is \overline{A} recursively enumerable? (Justify your answer.)
- (b) Suppose there is an oracle X_{Delphi} that decides the Halting problem, i. e., you can give to X_{Delphi} the code (M) of a a turing machine M and a word w and X_{Delphi} returns 1 (YES) or 0 (NO) depending on whether or not M halts on w.

Show that one can construct an Oracle-Turing machine T (which is allowed by a special extension to give some word $\langle M \rangle$ (a Turing machine code) and a word w to X_{Delphi} and gets back 1 or 0 depending on whether or not Mhalts on w) such that $L(T) = \overline{A}$.

(c) Does it follow from (a) and (b) that X_{Delphi} is not a Turing machine? Justify your answer. Note that you are not allowed to use the fact that the Halting problem is undecidable, but you must give a proof that only follows from (a) and (b).