
BeKomp Problem Set 6 due date: 28 November/02 December 2016

Problems Solved: 26 27 28 29 30

Name:

Matrikel-Nr.:

Problem 26. Consider the following term rewriting system:

a(x, s(y))→ a(s(x), y) (1)

a(x, 0)→ x (2)

m(x, s(y))→ a(m(x, y), x) (3)

m(x, 0)→ 0 (4)

Show that

m(s(s(0)), s(0))
∗→ s(s(0))

by a suitable reduction sequence. For each reduction step, underline the subterm
that you reduce, and indicate the reduction rule and the matching substitution
σ used explicitly.

Problem 27. Consider the grammar G = (N,Σ, P, S) where N = {S}, Σ =
{a, b}, P = {S → ε, S → aSbS}.

(a) Is aababb ∈ L(G)?

(b) Is aabab ∈ L(G)?

(c) Does every element of L(G) contain the same number of occurrences of a
and b?

(d) Is L(G) regular?

(e) Is L(G) recursive?

Justify your answers.

Problem 28. De�ne the following languages by context-free grammars over
the alphabet Σ = {0, 1}.

(a) L1 = {w |w contains at least two zeroes.}

(b) L2 = {w |w starts and ends with one and the same symbol.}
Note that one-letter words are in L2.

(c) L3 = {w |w consists of an odd number of symbols and the symbol in the center of w is a 0.}

(d) L4 = L2 ∩ L3

Problem 29. Construct a DFSM recognizing L(G) whereG = ({A,B,C} , {a, b, c} , P,A)
with the production rules P given by

A→ aA|bA|cA|bB|cB,
B → cA|cB|b|c.

Berechenbarkeit und Komplexität, WS2016 1

BeKomp Problem Set 6 due date: 28 November/02 December 2016

Hint: Start by a constructing a NFSM N . Then turn N into a DFSM D such
that L(G) = L(N) = L(D).
�Construct� means to explain how you turn the grammar into a DFSM. Simply
writing down a DFSMD with the required property, does not count as a solution
unless you prove that L(G) = L(D).

Problem 30. According to De�nition 32 of the lecture notes, there are no
natural numbers in Lambda calculus. However, natural numbers can be encoded
(known as Church encoding) as �Church numerals� (see below), i.e., as functions
n that map any function f to its n-fold application fn = f ◦ . . . ◦ f . Note that
we denote such a �natural number� representation via boldface symbols in order
to emphasize that these are lambda terms. In other words, we de�ne Church
numerals as follows. By letting �application� bind stronger than �abstraction�,
we avoid writing parentheses where appropriate.

0 = λf.λx.x

1 = λf.λx.fx

2 = λf.λx.f(fx)

3 = λf.λx.f(f(fx))

4 = λf.λx.f(f(f(fx)))

...

n = λf.λx. f(· · · (f︸ ︷︷ ︸
n-fold

x) · · ·)

1. De�ne a lambda term add that represents addition of �Church numerals�.

2. Show the intermediate steps of a reduction from ((add 2) 1) to 3.

Berechenbarkeit und Komplexität, WS2016 2

