Problems Solved:

16	17	18	19	20

Name:

Matrikel-Nr.:

Problem 16. Construct a Turing machine $M=\left(Q, \Gamma, \sqcup,\{0,1\}, \delta, q_{0}, F\right)$ such that $L(M)=\left\{1^{k} 01^{k+1} \mid k \in \mathbb{N}\right\}$. Write down Q, Γ, F and δ explicitly.
Problem 17. Write a RAM program that from a given natural number n prints its binary representation. In order to simplify the problem the output shall be in low positions first format, i.e., the number 8_{10} is 0001_{2} but not 1000_{2}.
Hint: please note that the computation of the quotient respectively remainder of a division by 2 can be implemented by the repeated subtraction of 2 .

Problem 18.

1. Show by using only the Definition of a loop program (Def. 23 in the lecture notes, Section 3.2.2) that the function

$$
s\left(x_{1}, x_{2}\right)= \begin{cases}1 & \text { if } x_{1}<x_{2} \\ 0 & \text { otherwise }\end{cases}
$$

is loop computable. I.e. give an explicit loop program for s.
Note that it is not allowed to use an abbreviation like

$$
\mathrm{xi}:=\mathrm{xj}-\mathrm{xk} ;
$$

2. Write a loop program that computes the function $d: \mathbb{N} \rightarrow \mathbb{N}$ where $d\left(x_{1}, x_{2}\right)$ is $k \in \mathbb{N}$ such that $k \cdot\left(x_{2}+1\right)=x_{1}+1$ if such a k exists. The result is $d\left(x_{1}, x_{2}\right)=0$, if a k with the above property does not exist.
For simplicity in the program for d, you are allowed to use a construction like the following (with the obvious semantics) where P is an arbitrary loop program.
IF $\mathrm{xi}<\mathrm{xj}$ THEN P END;

Problem 19. Provide a loop program that computes the function $f(n)=$ $\sum_{k=1}^{n} k(k+1)$, and thus show that f is loop computable.
You are only allowed to use the constructs given in Definition 23 of the lecture notes.

Problem 20. Suppose P is a while-program that does not contain any WHILE statements, but might modify the values of the variables x_{1} and x_{2}.
Transform the following program into Kleene's normal form.
Hint: first translate the program into a goto program, replace the GOTOs by assignments to a control variable, and add the WHILE wrapper.

```
x0 := 0
WHILE x1 DO
    x1 := x1 - 1;
    x2 := x1;
    WHILE x2 DO
```

```
        P;
    END;
END;
x0 := x0 + 1
```

