Problems Solved:

11	12	13	14	15

Name:

Matrikel-Nr.:

Problem 11. Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be two DFSM over the alphabet Σ. Let $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$ be the languages accepted by M_{1} and M_{2}, respectively.
Construct a DFSM $M=(Q, \Sigma, \delta, q, F)$ whose language $L(M)$ is the intersection of $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$. Write down Q, δ, q, and F explicitly.
Hint: M simulates the parallel execution of M_{1} and M_{2}. For that to work, M "remembers" in its state the state M_{1} as well as the state of M_{2}. This can be achieved by defining $Q=Q_{1} \times Q_{2}$.
Demonstrate your construction with the following DFSMs.

Problem 12. Let \ominus be defined over natural numbers as follows.

$$
x \ominus y= \begin{cases}x-y, & \text { if } x \geq y \\ 0, & \text { otherwise }\end{cases}
$$

Show that the language $L=\left\{a^{m} b^{n} c^{n \ominus m} \mid m, n \in \mathbb{N}\right\}$ over the alphabet $\Sigma=$ $\{a, b, c\}$ is not regular.

Problem 13. Let M_{1} be the DFSM with states $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$ whose transition graph is given below. Determine a regular expression r such that $L(r)=L\left(M_{1}\right)$. Show the derivation of the the final result by the technique based on Arden's Lemma (see lecture notes).

Problem 14. Let r be the following regular expression.

$$
(a b+b a)^{*}+b b
$$

Construct a nondeterministic finite state machine N such that $L(N)=L(r)$. Show the derivation of the result by following the technique presented in the proof of the theorem Equivalence of Regular Expressions and Automata (see lecture notes).

Problem 15. Let M be the following Turing maschine:

$$
\begin{gathered}
Q=\left\{q_{0}, q_{1}, f, r, \lambda, \rho, \tau\right\} \\
\Sigma=\{0,1\} \\
\Gamma=\{0,1, \sqcup, X\} \\
F=\left\{q_{1}\right\} \\
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, S, R\} \\
\delta\left(q_{0}, 1\right)=\delta(r, 1)=(r, 1, R) \\
\delta\left(q_{0}, 0\right)=\delta(r, 0)=(\tau, X, R) \\
\delta(\tau, 1)=(\lambda, X, S) \\
\delta(\lambda, 1)=\delta(\rho, X)=(\rho, X, R) \\
\delta(\lambda, X)=\delta(\rho, 1)=(\lambda, X, L) \\
\delta(f, \sqcup)=\left(q_{1}, \sqcup, S\right) \\
\delta(f, X)=(f, X, R) \\
\delta(\lambda, \sqcup)=(f, \sqcup, R)
\end{gathered}
$$

(a) Show the moves (sequences of configurations) performed by the machine for inputs 101 and 1011.
(b) Describe the language $L(M)$ accepted by M as precisely as possible.

Note that the above definition extends the standard definition of a Turing maschine by an additional direction S that denotes "standstill". When solving the problem you are allowed to make corresponding moves (sequences of configurations) that do not change the tape position.
Remark: Any extendend Turing maschine M with directions L, R, S can be replaced by an equivalent Turing maschine M^{\prime} with directions L, R by introducing for every transition $\delta(q, x)=\left(q^{\prime}, x^{\prime}, S\right)$ of M in M^{\prime} a new state $q^{\prime \prime}$ with

$$
\begin{aligned}
& \delta(q, x)=\left(q^{\prime \prime}, x^{\prime}, L\right) \\
& \delta\left(q^{\prime \prime}, x\right)=\left(q^{\prime}, x, R\right)
\end{aligned}
$$

i.e. M rather than standing still moves first one position left and then one position right.

