Problems Solved:

6 7 8 9 10

Name:

Matrikel-Nr.:

Problem 6. What language is accepted by the DFSM depicted below? Describe that language in your own words and by a regular expression.

Problem 7. Construct a deterministic finite state machine for each of the following two languages:

- 1. the language L_1 of all strings over $\{0,1\}$ that contain 00 as a substring.
- 2. the language L_2 of all strings over $\{0,1\}$ that end up with the string 00.

Problem 8. Construct explicitly a deterministic finite state machine $D=(Q,\Sigma,\delta,S,F)$ such that $L(D)=\emptyset$ and such that changing the set F of final states of D leads to a DFSM $D'=(Q,\Sigma,\delta,S,F')$ with $L(D')=\{\varepsilon\}$.

Problem 9. Convert the following NFA to DFA.

Problem 10. Let the DFSM $M=(Q,\Sigma,\delta,q_0,F)$ be given by $Q=\{q_0,q_1,q_2\}$, $\Sigma=\{0,1\}$, $F=\{q_1,q_2\}$ and the following transition function $\delta:Q\times\Sigma\to Q$:

Construct a minimal DFSM D such that L(M)=L(D) using Algorithm MINIMIZE. (cf. Section 2.3 *Minimization of Finite State Machines*)