Problems Solved:

\section*{| 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- |}

Name:

Matrikel-Nr.:

Problem 6. What language is accepted by the DFSM depicted below? Describe that language in your own words and by a regular expression.

Problem 7. Construct a deterministic finite state machine for each of the following two languages:

1. the language L_{1} of all strings over $\{0,1\}$ that contain 00 as a substring.
2. the language L_{2} of all strings over $\{0,1\}$ that end up with the string 00 .

Problem 8. Construct explicitly a deterministic finite state machine $D=$ $(Q, \Sigma, \delta, S, F)$ such that $L(D)=\emptyset$ and such that changing the set F of final states of D leads to a DFSM $D^{\prime}=\left(Q, \Sigma, \delta, S, F^{\prime}\right)$ with $L\left(D^{\prime}\right)=\{\varepsilon\}$.

Problem 9. Convert the following NFA to DFA.

Problem 10. Let the DFSM $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be given by $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$, $\Sigma=\{0,1\}, F=\left\{q_{1}, q_{2}\right\}$ and the following transition function $\delta: Q \times \Sigma \rightarrow Q$:

Construct a minimal DFSM D such that $L(M)=L(D)$ using Algorithm Minimize. (cf. Section 2.3 Minimization of Finite State Machines)

