
Dafny
Demonstration of two Search Algorithms implemented in Dafny

Holzinger Jan-Michael

Seminar Formal Methods

22. Juni 2016

Jan H. (FMSem) Dafny 22. Juni 2016 1 / 7



The purpose of this talk is to give (toy-)examples on how to implement
and verify algorithms in Dafny. The examples of the Search Algorithms are
chosen, as how they work and their properties are widely known. Still they
are not just trivial examples.
We will see some Annotations and Keywords highly used in Dafny. Also we
will encounter some errors, that will occur while (live-)verification. We will
see, how „thinking before coding“ can help, and also, that sometimes
these errors also can be helpful in how to develop code, and to not forget
parts of an algorithm.

Jan H. (FMSem) Dafny 22. Juni 2016 2 / 7



Search Algorithms

Purpose of a Search Algorithm:

Given
a Data Structure Input (1)
and a Key find (2)

Return
i the position of the Key

, if it is contained in the Data Structure.

(3)

(1) in the demonstration this will be an Array of Integers
(2) here an Integer
(3) Typically also an Integer

Jan H. (FMSem) Dafny 22. Juni 2016 3 / 7



Search Algorithms

Purpose of a Search Algorithm:

Given

a Data Structure Input (1)
and a Key find (2)

Return
i the position of the Key

, if it is contained in the Data Structure.

(3)

(1) in the demonstration this will be an Array of Integers
(2) here an Integer
(3) Typically also an Integer

Jan H. (FMSem) Dafny 22. Juni 2016 3 / 7



Search Algorithms

Purpose of a Search Algorithm:

Given
a Data Structure Input (1)

and a Key find (2)
Return

i the position of the Key

, if it is contained in the Data Structure.

(3)

(1) in the demonstration this will be an Array of Integers
(2) here an Integer
(3) Typically also an Integer

Jan H. (FMSem) Dafny 22. Juni 2016 3 / 7



Search Algorithms

Purpose of a Search Algorithm:

Given
a Data Structure Input (1)

and a Key find (2)
Return

i the position of the Key

, if it is contained in the Data Structure.

(3)

(1) in the demonstration this will be an Array of Integers

(2) here an Integer
(3) Typically also an Integer

Jan H. (FMSem) Dafny 22. Juni 2016 3 / 7



Search Algorithms

Purpose of a Search Algorithm:

Given
a Data Structure Input (1)
and a Key find (2)

Return
i the position of the Key

, if it is contained in the Data Structure.

(3)

(1) in the demonstration this will be an Array of Integers

(2) here an Integer
(3) Typically also an Integer

Jan H. (FMSem) Dafny 22. Juni 2016 3 / 7



Search Algorithms

Purpose of a Search Algorithm:

Given
a Data Structure Input (1)
and a Key find (2)

Return
i the position of the Key

, if it is contained in the Data Structure.

(3)

(1) in the demonstration this will be an Array of Integers
(2) here an Integer

(3) Typically also an Integer

Jan H. (FMSem) Dafny 22. Juni 2016 3 / 7



Search Algorithms

Purpose of a Search Algorithm:

Given
a Data Structure Input (1)
and a Key find (2)

Return

i the position of the Key

, if it is contained in the Data Structure.

(3)

(1) in the demonstration this will be an Array of Integers
(2) here an Integer

(3) Typically also an Integer

Jan H. (FMSem) Dafny 22. Juni 2016 3 / 7



Search Algorithms

Purpose of a Search Algorithm:

Given
a Data Structure Input (1)
and a Key find (2)

Return
i the position of the Key

, if it is contained in the Data Structure.

(3)

(1) in the demonstration this will be an Array of Integers
(2) here an Integer

(3) Typically also an Integer

Jan H. (FMSem) Dafny 22. Juni 2016 3 / 7



Search Algorithms

Purpose of a Search Algorithm:

Given
a Data Structure Input (1)
and a Key find (2)

Return
i the position of the Key

, if it is contained in the Data Structure.

(3)

(1) in the demonstration this will be an Array of Integers
(2) here an Integer
(3) Typically also an Integer

Jan H. (FMSem) Dafny 22. Juni 2016 3 / 7



Search Algorithms

Purpose of a Search Algorithm:

Given
a Data Structure Input (1)
and a Key find (2)

Return
i the position of the Key, if it is contained in the Data Structure.(3)

(1) in the demonstration this will be an Array of Integers
(2) here an Integer
(3) Typically also an Integer

Jan H. (FMSem) Dafny 22. Juni 2016 3 / 7



Linear Search

The probably most „natural“ approach is the following:

Linear Search

1 Initialize i with 0

2 Check if the element Input[i] has the desired value find

yes Return i

no As long as we are not at the last element of Input:

Increase i by 1, Go to Step 2

3 We only come here, when Input does not contain find

Return that information

One advantage of this Algorithm is, that it has (almost) no precondition
on the Dataset Input. It belongs to the complexity class O(n)

Jan H. (FMSem) Dafny 22. Juni 2016 4 / 7



Linear Search

The probably most „natural“ approach is the following:

Linear Search

1 Initialize i with 0

2 Check if the element Input[i] has the desired value find

yes Return i

no As long as we are not at the last element of Input:

Increase i by 1, Go to Step 2

3 We only come here, when Input does not contain find

Return that information

One advantage of this Algorithm is, that it has (almost) no precondition
on the Dataset Input. It belongs to the complexity class O(n)

Jan H. (FMSem) Dafny 22. Juni 2016 4 / 7



Linear Search

The probably most „natural“ approach is the following:

Linear Search
1 Initialize i with 0

2 Check if the element Input[i] has the desired value find

yes Return i

no As long as we are not at the last element of Input:

Increase i by 1, Go to Step 2

3 We only come here, when Input does not contain find

Return that information

One advantage of this Algorithm is, that it has (almost) no precondition
on the Dataset Input. It belongs to the complexity class O(n)

Jan H. (FMSem) Dafny 22. Juni 2016 4 / 7



Linear Search

The probably most „natural“ approach is the following:

Linear Search
1 Initialize i with 0

2 Check if the element Input[i] has the desired value find

yes Return i

no As long as we are not at the last element of Input:

Increase i by 1, Go to Step 2

3 We only come here, when Input does not contain find

Return that information

One advantage of this Algorithm is, that it has (almost) no precondition
on the Dataset Input. It belongs to the complexity class O(n)

Jan H. (FMSem) Dafny 22. Juni 2016 4 / 7



Linear Search

The probably most „natural“ approach is the following:

Linear Search
1 Initialize i with 0

2 Check if the element Input[i] has the desired value find

yes Return i

no As long as we are not at the last element of Input:

Increase i by 1, Go to Step 2

3 We only come here, when Input does not contain find

Return that information

One advantage of this Algorithm is, that it has (almost) no precondition
on the Dataset Input. It belongs to the complexity class O(n)

Jan H. (FMSem) Dafny 22. Juni 2016 4 / 7



Linear Search

The probably most „natural“ approach is the following:

Linear Search
1 Initialize i with 0

2 Check if the element Input[i] has the desired value find

yes Return i

no As long as we are not at the last element of Input:

Increase i by 1, Go to Step 2

3 We only come here, when Input does not contain find

Return that information

One advantage of this Algorithm is, that it has (almost) no precondition
on the Dataset Input. It belongs to the complexity class O(n)

Jan H. (FMSem) Dafny 22. Juni 2016 4 / 7



Linear Search

The probably most „natural“ approach is the following:

Linear Search
1 Initialize i with 0

2 Check if the element Input[i] has the desired value find

yes Return i

no As long as we are not at the last element of Input:

Increase i by 1, Go to Step 2

3 We only come here, when Input does not contain find

Return that information

One advantage of this Algorithm is, that it has (almost) no precondition
on the Dataset Input. It belongs to the complexity class O(n)

Jan H. (FMSem) Dafny 22. Juni 2016 4 / 7



Linear Search

The probably most „natural“ approach is the following:

Linear Search
1 Initialize i with 0

2 Check if the element Input[i] has the desired value find

yes Return i

no As long as we are not at the last element of Input:

Increase i by 1, Go to Step 2

3 We only come here, when Input does not contain find

Return that information

One advantage of this Algorithm is, that it has (almost) no precondition
on the Dataset Input. It belongs to the complexity class O(n)

Jan H. (FMSem) Dafny 22. Juni 2016 4 / 7



Linear Search

The probably most „natural“ approach is the following:

Linear Search
1 Initialize i with 0

2 Check if the element Input[i] has the desired value find

yes Return i

no As long as we are not at the last element of Input:

Increase i by 1, Go to Step 2

3 We only come here, when Input does not contain find

Return that information

One advantage of this Algorithm is, that it has (almost) no precondition
on the Dataset Input. It belongs to the complexity class O(n)

Jan H. (FMSem) Dafny 22. Juni 2016 4 / 7



Linear Search

The probably most „natural“ approach is the following:

Linear Search
1 Initialize i with 0

2 Check if the element Input[i] has the desired value find

yes Return i

no As long as we are not at the last element of Input:

Increase i by 1, Go to Step 2

3 We only come here, when Input does not contain find

Return that information

One advantage of this Algorithm is, that it has (almost) no precondition
on the Dataset Input. It belongs to the complexity class O(n)

Jan H. (FMSem) Dafny 22. Juni 2016 4 / 7



Remember

These are some Dafny concepts/keywords, we will need for this Algorithm.

requires Used to state Preconditions
ensures Used to state Postconditions
invariant Used to verify Code within a Loop. Needed as Dafny

considers Loops „Black-Boxes“ while verification.

Jan H. (FMSem) Dafny 22. Juni 2016 5 / 7



Remember

These are some Dafny concepts/keywords, we will need for this Algorithm.

requires Used to state Preconditions

ensures Used to state Postconditions
invariant Used to verify Code within a Loop. Needed as Dafny

considers Loops „Black-Boxes“ while verification.

Jan H. (FMSem) Dafny 22. Juni 2016 5 / 7



Remember

These are some Dafny concepts/keywords, we will need for this Algorithm.

requires Used to state Preconditions
ensures Used to state Postconditions

invariant Used to verify Code within a Loop. Needed as Dafny
considers Loops „Black-Boxes“ while verification.

Jan H. (FMSem) Dafny 22. Juni 2016 5 / 7



Remember

These are some Dafny concepts/keywords, we will need for this Algorithm.

requires Used to state Preconditions
ensures Used to state Postconditions
invariant Used to verify Code within a Loop. Needed as Dafny

considers Loops „Black-Boxes“ while verification.

Jan H. (FMSem) Dafny 22. Juni 2016 5 / 7



Binary Search
Next is a more elevated approach:

Suppose the Input Data is already
sorted by size. Then one could as well apply Linear Search, but (except for
special cases) there is a faster way to do this. Suppose we check the
element in the middle of the Input Data.Then there are 3 possible results:

1 We are VERY lucky, and we already found the desired value. But as
we have to expect all sizes and kinds of Input, this will be a case we
can neglect.

2 The Key we are looking for is greater, then the value of the current
element.

3 The Key we are looking for is smaller, then the value of the current
element.

In the remaining Cases 2 and 3, there is no need to search the first/last
half of the Input, as we expect the Input to be sorted, respectively. So we
cut down the Problem into a Problem of half size. And of course we can
apply these steps to the remaining Input Data again, and iteratively we get
an algorithm. (Of course, the smaller the Input Data, the more likely we
directly find the desired Key - if it is contained.)

Jan H. (FMSem) Dafny 22. Juni 2016 6 / 7



Binary Search
Next is a more elevated approach: Suppose the Input Data is already
sorted by size.

Then one could as well apply Linear Search, but (except for
special cases) there is a faster way to do this. Suppose we check the
element in the middle of the Input Data.Then there are 3 possible results:

1 We are VERY lucky, and we already found the desired value. But as
we have to expect all sizes and kinds of Input, this will be a case we
can neglect.

2 The Key we are looking for is greater, then the value of the current
element.

3 The Key we are looking for is smaller, then the value of the current
element.

In the remaining Cases 2 and 3, there is no need to search the first/last
half of the Input, as we expect the Input to be sorted, respectively. So we
cut down the Problem into a Problem of half size. And of course we can
apply these steps to the remaining Input Data again, and iteratively we get
an algorithm. (Of course, the smaller the Input Data, the more likely we
directly find the desired Key - if it is contained.)

Jan H. (FMSem) Dafny 22. Juni 2016 6 / 7



Binary Search
Next is a more elevated approach: Suppose the Input Data is already
sorted by size. Then one could as well apply Linear Search, but (except for
special cases) there is a faster way to do this.

Suppose we check the
element in the middle of the Input Data.Then there are 3 possible results:

1 We are VERY lucky, and we already found the desired value. But as
we have to expect all sizes and kinds of Input, this will be a case we
can neglect.

2 The Key we are looking for is greater, then the value of the current
element.

3 The Key we are looking for is smaller, then the value of the current
element.

In the remaining Cases 2 and 3, there is no need to search the first/last
half of the Input, as we expect the Input to be sorted, respectively. So we
cut down the Problem into a Problem of half size. And of course we can
apply these steps to the remaining Input Data again, and iteratively we get
an algorithm. (Of course, the smaller the Input Data, the more likely we
directly find the desired Key - if it is contained.)

Jan H. (FMSem) Dafny 22. Juni 2016 6 / 7



Binary Search
Next is a more elevated approach: Suppose the Input Data is already
sorted by size. Then one could as well apply Linear Search, but (except for
special cases) there is a faster way to do this. Suppose we check the
element in the middle of the Input Data.

Then there are 3 possible results:
1 We are VERY lucky, and we already found the desired value. But as
we have to expect all sizes and kinds of Input, this will be a case we
can neglect.

2 The Key we are looking for is greater, then the value of the current
element.

3 The Key we are looking for is smaller, then the value of the current
element.

In the remaining Cases 2 and 3, there is no need to search the first/last
half of the Input, as we expect the Input to be sorted, respectively. So we
cut down the Problem into a Problem of half size. And of course we can
apply these steps to the remaining Input Data again, and iteratively we get
an algorithm. (Of course, the smaller the Input Data, the more likely we
directly find the desired Key - if it is contained.)

Jan H. (FMSem) Dafny 22. Juni 2016 6 / 7



Binary Search
Next is a more elevated approach: Suppose the Input Data is already
sorted by size. Then one could as well apply Linear Search, but (except for
special cases) there is a faster way to do this. Suppose we check the
element in the middle of the Input Data.Then there are 3 possible results:

1 We are VERY lucky, and we already found the desired value. But as
we have to expect all sizes and kinds of Input, this will be a case we
can neglect.

2 The Key we are looking for is greater, then the value of the current
element.

3 The Key we are looking for is smaller, then the value of the current
element.

In the remaining Cases 2 and 3, there is no need to search the first/last
half of the Input, as we expect the Input to be sorted, respectively. So we
cut down the Problem into a Problem of half size. And of course we can
apply these steps to the remaining Input Data again, and iteratively we get
an algorithm. (Of course, the smaller the Input Data, the more likely we
directly find the desired Key - if it is contained.)

Jan H. (FMSem) Dafny 22. Juni 2016 6 / 7



Binary Search
Next is a more elevated approach: Suppose the Input Data is already
sorted by size. Then one could as well apply Linear Search, but (except for
special cases) there is a faster way to do this. Suppose we check the
element in the middle of the Input Data.Then there are 3 possible results:

1 We are VERY lucky, and we already found the desired value. But as
we have to expect all sizes and kinds of Input, this will be a case we
can neglect.

2 The Key we are looking for is greater, then the value of the current
element.

3 The Key we are looking for is smaller, then the value of the current
element.

In the remaining Cases 2 and 3, there is no need to search the first/last
half of the Input, as we expect the Input to be sorted, respectively. So we
cut down the Problem into a Problem of half size. And of course we can
apply these steps to the remaining Input Data again, and iteratively we get
an algorithm. (Of course, the smaller the Input Data, the more likely we
directly find the desired Key - if it is contained.)

Jan H. (FMSem) Dafny 22. Juni 2016 6 / 7



Binary Search
Next is a more elevated approach: Suppose the Input Data is already
sorted by size. Then one could as well apply Linear Search, but (except for
special cases) there is a faster way to do this. Suppose we check the
element in the middle of the Input Data.Then there are 3 possible results:

1 We are VERY lucky, and we already found the desired value. But as
we have to expect all sizes and kinds of Input, this will be a case we
can neglect.

2 The Key we are looking for is greater, then the value of the current
element.

3 The Key we are looking for is smaller, then the value of the current
element.

In the remaining Cases 2 and 3, there is no need to search the first/last
half of the Input, as we expect the Input to be sorted, respectively. So we
cut down the Problem into a Problem of half size. And of course we can
apply these steps to the remaining Input Data again, and iteratively we get
an algorithm. (Of course, the smaller the Input Data, the more likely we
directly find the desired Key - if it is contained.)

Jan H. (FMSem) Dafny 22. Juni 2016 6 / 7



Binary Search
Next is a more elevated approach: Suppose the Input Data is already
sorted by size. Then one could as well apply Linear Search, but (except for
special cases) there is a faster way to do this. Suppose we check the
element in the middle of the Input Data.Then there are 3 possible results:

1 We are VERY lucky, and we already found the desired value. But as
we have to expect all sizes and kinds of Input, this will be a case we
can neglect.

2 The Key we are looking for is greater, then the value of the current
element.

3 The Key we are looking for is smaller, then the value of the current
element.

In the remaining Cases 2 and 3, there is no need to search the first/last
half of the Input, as we expect the Input to be sorted, respectively. So we
cut down the Problem into a Problem of half size. And of course we can
apply these steps to the remaining Input Data again, and iteratively we get
an algorithm. (Of course, the smaller the Input Data, the more likely we
directly find the desired Key - if it is contained.)

Jan H. (FMSem) Dafny 22. Juni 2016 6 / 7



Binary Search
Next is a more elevated approach: Suppose the Input Data is already
sorted by size. Then one could as well apply Linear Search, but (except for
special cases) there is a faster way to do this. Suppose we check the
element in the middle of the Input Data.Then there are 3 possible results:

1 We are VERY lucky, and we already found the desired value. But as
we have to expect all sizes and kinds of Input, this will be a case we
can neglect.

2 The Key we are looking for is greater, then the value of the current
element.

3 The Key we are looking for is smaller, then the value of the current
element.

In the remaining Cases 2 and 3, there is no need to search the first/last
half of the Input, as we expect the Input to be sorted, respectively.

So we
cut down the Problem into a Problem of half size. And of course we can
apply these steps to the remaining Input Data again, and iteratively we get
an algorithm. (Of course, the smaller the Input Data, the more likely we
directly find the desired Key - if it is contained.)

Jan H. (FMSem) Dafny 22. Juni 2016 6 / 7



Binary Search
Next is a more elevated approach: Suppose the Input Data is already
sorted by size. Then one could as well apply Linear Search, but (except for
special cases) there is a faster way to do this. Suppose we check the
element in the middle of the Input Data.Then there are 3 possible results:

1 We are VERY lucky, and we already found the desired value. But as
we have to expect all sizes and kinds of Input, this will be a case we
can neglect.

2 The Key we are looking for is greater, then the value of the current
element.

3 The Key we are looking for is smaller, then the value of the current
element.

In the remaining Cases 2 and 3, there is no need to search the first/last
half of the Input, as we expect the Input to be sorted, respectively. So we
cut down the Problem into a Problem of half size.

And of course we can
apply these steps to the remaining Input Data again, and iteratively we get
an algorithm. (Of course, the smaller the Input Data, the more likely we
directly find the desired Key - if it is contained.)

Jan H. (FMSem) Dafny 22. Juni 2016 6 / 7



Binary Search
Next is a more elevated approach: Suppose the Input Data is already
sorted by size. Then one could as well apply Linear Search, but (except for
special cases) there is a faster way to do this. Suppose we check the
element in the middle of the Input Data.Then there are 3 possible results:

1 We are VERY lucky, and we already found the desired value. But as
we have to expect all sizes and kinds of Input, this will be a case we
can neglect.

2 The Key we are looking for is greater, then the value of the current
element.

3 The Key we are looking for is smaller, then the value of the current
element.

In the remaining Cases 2 and 3, there is no need to search the first/last
half of the Input, as we expect the Input to be sorted, respectively. So we
cut down the Problem into a Problem of half size. And of course we can
apply these steps to the remaining Input Data again, and iteratively we get
an algorithm. (Of course, the smaller the Input Data, the more likely we
directly find the desired Key - if it is contained.)

Jan H. (FMSem) Dafny 22. Juni 2016 6 / 7



Remember

These are some Dafny concepts/keywords, we will need for this Algorithm.
Additionally to those presented for LinearSearch, these are:

predicate A Function, that returns a Boolean Value
reads Annotation to allow a function to read (not modify) data

in a Heap-Allocated Datastructure.

Jan H. (FMSem) Dafny 22. Juni 2016 7 / 7



Remember

These are some Dafny concepts/keywords, we will need for this Algorithm.
Additionally to those presented for LinearSearch, these are:

predicate A Function, that returns a Boolean Value

reads Annotation to allow a function to read (not modify) data
in a Heap-Allocated Datastructure.

Jan H. (FMSem) Dafny 22. Juni 2016 7 / 7



Remember

These are some Dafny concepts/keywords, we will need for this Algorithm.
Additionally to those presented for LinearSearch, these are:

predicate A Function, that returns a Boolean Value
reads Annotation to allow a function to read (not modify) data

in a Heap-Allocated Datastructure.

Jan H. (FMSem) Dafny 22. Juni 2016 7 / 7


