JOHANNES KEPLER UNIVERSITY LINZ

A Parallel, In-Place, Rectangular Matrix Transpose Algorithm

Computational Complexity Analysis

JYU JOHANNES KEPLER UNIVERSITY LINZ

 Table of Contents

 Table of Contents}

1. Introduction
2. Revision of TRIP
3. Analysis of Computational Complexity
a. Work
b. Span
c. Parallelism
d. Generalizations

JOHANNES KEPLER
UNIVERSITY LINZ

Introduction

J뜨
 Introduction

Computational Complexity of Parallel Algorithms

Work W_{1}
"execution time on one processor"
i.e.: all vertices of computation dag approximation: \# of nodes of computation dag

Span W_{∞}
"execution time on infinitely many processors"
i.e. length of critical path of computation dag approximation: \# of nodes on critical path

Introduction to Algorithms Third Edition, p777ff

$$
\text { Parallelism } \frac{W_{1}}{W_{\infty}}
$$

- average amount of work per step along critical path
- maximum possible speedup
- limit on possibility of attaining perfect speedup

JOHANNES KEPLER
UNIVERSITY LINZ

Revision of TRIP

TRIP:

If matrix is rectangular TRIP transposes sub-matrices, then combines the result with merge or split
merge:
first rotates the middle part of the array, then recursively merges the left and right parts of the array
split:
first recursively splits the left and right parts of the array, then rotates the middle part of the array

JOHANNES KEPLER UNIVERSITY LINZ

Analysis of Computational Complexity

Restriction to Powers of Two

"power condition"

Matrix dimensions $\mathrm{M} \times \mathrm{N}$ and $\mathrm{N} \times \mathrm{M}$

$$
\left(\exists k \in \mathbb{N}: N=2^{k}\right) \wedge\left(\exists l \in \mathbb{N}: M=2^{l} N\right)
$$

recursive calls are symmetric
TRIP's recursive call are either all merge or all split

Work

1. Example: Basic Algorithms
 2. TRIP Result \& Proof Sketch

Work Example

Work of Base Algorithms

```
cilk reverse(A, mo, m},l) 
    if (l>1) {
        lm}=l/2
        spawn reverse( }A,\mp@subsup{m}{0}{},\mp@subsup{m}{1}{},\mp@subsup{l}{m}{\prime})\mathrm{ ;
        spawn reverse( }A,\mp@subsup{m}{0}{}+\mp@subsup{l}{m}{\prime},\mp@subsup{m}{1}{}-\mp@subsup{l}{m}{},l-\mp@subsup{l}{m}{\prime})\mathrm{ ;
    } else {
        swap (A, mo, m
    }
}
```

Lemma 1 (Work of reverse) If length $n=m_{1}-m_{0}$ of array A is even, then

$$
W_{1}^{\text {reverse }}(n)=n-1
$$

Proof. initially $l=n / 2$, base case $l=1$
binary tree has $n / 2-1$ nodes
1 swap per leaf: $n / 2$ swaps

$$
W_{1}^{\mathrm{reverse}}(n)=\frac{n}{2}-1+\frac{n}{2}=n-1
$$

```
cilk rol(A, n, k) {
    spawn reverse(a, 0,k);
    spawn reverse(a,k, n);
    sync;
    spawn reverse(a, 0, n);
}
```

Lemma 2 (Work of rol) If length n of array A is even, then the work of $\operatorname{rol}(n, n / 2)$ is

$$
W_{1}^{\text {rol }}(n, n / 2)=2 n-3
$$

Proof. algorithm not recursive
half array rotations: work $n / 2-1$ each full array rotation: work $n-1$

$$
W_{1}^{\mathrm{rol}}(n, n / 2)=2\left(\frac{n}{2}-1\right)+(n-1)=2 n-3
$$

Work of TRIP

Show that under power condition, for $\mathrm{M} \times \mathrm{N}$ matrix
$W_{1}^{\text {TRIP }}(M, N)=\Theta\left(M N\left(1+\log \frac{M}{N} \log N\right)\right)$
and in general:
$W_{1}^{\text {TRIP }}(M, N)=\Theta\left(M N\left(1+\log \frac{\max (M, N)}{\min (M, N)} \log \min (M, N)\right)\right)$

METHOD

don't count vertices in computation dag
count inner nodes in recursion tree and swaps

- function calls (nodes in recursive call trees)
- memory accesses (swaps)

Work of TRIP

Proof Sketch

Work of TRIP

$$
W_{1}^{\text {TRIP }}(M, N)=\underbrace{\frac{M}{N}-1}_{\text {\# of inner nodes }}+\underbrace{\sum_{0 \leq i<\lg \frac{M}{N}} 2^{i} W_{1}^{\text {merge }}\left(p_{i}, q_{i}, N\right)}_{\text {combine effort }}+\underbrace{\frac{M}{N} W_{1}^{\text {square }(N)}}_{\text {work in leaves of transpose tree (square_transpose) }}
$$

Work of merge

$$
W_{1}^{\text {merge }}\left(p_{i}, q_{i}, N\right)=\underbrace{N-1}_{\text {\# of inner nodes }}+\underbrace{\sum_{0 \leq j<\lg N} 2^{j} W_{1}^{\text {rol }}\left(\frac{n_{j}}{2} p_{i}+\frac{n_{j}}{2} q_{i}, \frac{n_{j}}{2} p_{i}\right)}_{\text {work within inner nodes of the merge tree }}
$$

Work of rol

$$
W_{1}^{\mathrm{rol}}\left(\frac{n_{j}}{2} p_{i}+\frac{n_{j}}{2} q_{i}, \frac{n_{j}}{2} p_{i}\right)=N M 2^{-i-j}-3
$$

Work of TRIP

wide matrices

TRIP recursion is analogous for tall and wide matrices only difference:

- in merge rol is called before the recursive merge call
- in splitt rol is called after the recursive split call

This difference does not cause a change in the amount of work of TRIP.
Corollary 1 (Work of TRIP). Let $A_{M, N}$ be a tall, wide or square matrix that satisfies the power condition. Then

$$
W_{1}^{\text {TRIP }}(M, N)=\Theta\left(M N\left(1+\log \frac{\max (M, N)}{\min (M, N)} \log \min (M, N)\right)\right)
$$

Visualization

Work as function of Matrix Dimensions

Span

1. Example: Basic Algorithms 2. TRIP Result

Span Example

Span of Base Algorithms

```
cilk reverse(A, mo, m},\mp@code{l})
    if (l>1) {
        lm}=l/2
        spawn reverse( }A,\mp@subsup{m}{0}{},\mp@subsup{m}{1}{},\mp@subsup{l}{m}{\prime})\mathrm{ ;
        spawn reverse( }A,\mp@subsup{m}{0}{}+\mp@subsup{l}{m}{\prime},\mp@subsup{m}{1}{}-\mp@subsup{l}{m}{},l-\mp@subsup{l}{m}{\prime})
    } else {
        swap (A, mo, m
    }
}
```

Lemma 3 (Span of reverse). If length n of array A is a power of two, then

$$
W_{\infty}^{\text {reverse }}(n)=\log \frac{n}{2}+1
$$

Proof. initially $l=n / 2$, base case $l=1$
binary tree has $\log n / 2$ levels
1 swap in leaf adds 1 to span

$$
W_{\infty}^{\text {reverse }}(n)=\log \frac{n}{2}+1
$$

```
cilk rol(A, n, k) {
    spawn reverse(a, 0, k);
    spawn reverse(a,k, n);
    sync;
    spawn reverse(a, 0, n);
}
```

Lemma 4 (Span of rol). If length n of array A is a power of two, then the span of $\operatorname{rol}(n, n / 2)$ is

$$
W_{\infty}^{\text {rol }}(n)=\log 2^{-1} n+\log 2^{-2} n+3
$$

Proof. algorithm not recursive
rol consists of three reversals of lengths $n / 2, n / 2$ and n first two are in parallel
Lemma 3
adding span 1 for high-level function calls (cf. inner nodes)
$W_{\infty}^{\mathrm{rol}}(n, n / 2)=\log \frac{n}{2}+\log \frac{n}{4}+3=\log 2^{-1} n+\log 2^{-2} n+3$

J YU

Result

Calculate span of tall matrix transpose
count levels and swaps on critical path, that includes
span of

- creating the divide tree
- combining the nodes via merge/split (itself recursive procedures)
- square-transposing in the leaf nodes

Theorem 1 (Span of TRIP for tall matrices). Let $A_{M, N}$ be a tall matrix that satisfies the power condition.
Then
$W_{\infty}^{\text {TRIP }}(M, N)=\log \frac{M}{N}+\log \frac{M}{N} \log N\left(3 \log N+\log \frac{M}{N}\right)+\log N+1$
in general
$W_{\infty}^{\text {TRIP }}(M, N)=\log \frac{m}{n}+\log \frac{m}{n} \log n\left(3 \log n+\log \frac{m}{n}\right)+\log n+1$
where $m=\max (M, N)$ and $n=\min (M, N)$

Visualization

Span as function of Matrix Dimensions

Span as Function of Matrix Configuration

Parallelism

Result

Rectangular Matrices

$$
\Theta\left(\frac{M N}{\log M / N+\log N}\right)
$$

Square Matrices

$\Theta\left(\frac{N^{2}}{\log N}\right)$

calculation:

- divide work by span
- case distinction rectangular / square
- simplification using Landau symbols

Generalizations

power condition unsatisfied

Example: 7 x 5 Matrix

Generalization

Power Condition not Satisfied

TRIP work: divide by modified bisection

Generalization

Power Condition not Satisfied

Generalization

Power Condition not Satisfied

TRIP parallelism: divide by modified bisection

Thank you

JOHANNES KEPLER
UNIVERSITY LINZ

Revision of TRIP

TRIP Algorithm

If matrix is rectangular TRIP transposes sub-matrices, then combines the result with merge or split
$\operatorname{TRIP}(A, m, n)= \begin{cases}\operatorname{TRIP}\left(A\left(0:\left\lfloor\frac{m}{2}\right\rfloor, 0: n\right),\left\lfloor\frac{m}{2}\right\rfloor, n\right) \| & \\ \operatorname{TRIP}\left(A\left(\left\lfloor\frac{m}{2}\right\rfloor: m, 0: n\right),\left\lceil\frac{m}{2}\right\rceil, n\right) ; & \text { if } m>n \\ \operatorname{merge}\left(\bar{A},\left\lfloor\frac{m}{2}\right\rfloor,\left\lceil\frac{m}{2}\right\rceil, n\right) & \\ \operatorname{TRIP}\left(A\left(0: m, 0:\left\lfloor\frac{n}{2}\right\rfloor\right), m,\left\lfloor\frac{n}{2}\right\rfloor\right) \| & \\ \operatorname{TRIP}\left(A\left(0: m,\left\lfloor\frac{n}{2}\right\rfloor: n\right), m,\left\lceil\frac{n}{2}\right\rceil\right) ; & \text { if } m<n \\ \operatorname{split}\left(\bar{A},\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil, m\right) & \text { if } m=n \\ \text { square_transpose }(A, n) & \end{cases}$

merge Algorithm

merge combines the transposes of sub-matrices of tall matrices
merge first rotates the middle part of the array, then recursively merges the left and right parts of the array

$$
\operatorname{merge}(\bar{A}, p, q, n)= \begin{cases}\operatorname{rol}\left(\bar{A}\left(\left\lfloor\frac{n}{2}\right\rfloor p: n p+\left\lfloor\frac{n}{2}\right\rfloor q\right),\left\lceil\frac{n}{2}\right\rceil p\right) ; & \\ \operatorname{merge}\left(\bar{A}\left(0:\left\lfloor\frac{n}{2}\right\rfloor(p+q)\right), p, q,\left\lfloor\frac{n}{2}\right\rfloor\right) \| & \text { if } n>1 \\ \operatorname{merge}\left(\bar{A}\left(\left\lfloor\frac{n}{2}\right\rfloor(p+q): n(p+q)\right), p, q,\left\lceil\frac{n}{2}\right\rceil\right) & \\ \bar{A} & \text { if } n=1\end{cases}
$$

rol(arr, k) ... left rotation (circular shift) of array arr by \boldsymbol{k} elements

split Algorithm

split combines the transposes of sub-matrices of wide matrices
split first recursively splits the left and right parts of the array, then rotates the middle part of the array

$$
\operatorname{split}(\bar{A}, p, q, m)= \begin{cases}\operatorname{split}\left(\bar{A}\left(0:\left\lfloor\frac{m}{2}\right\rfloor(p+q)\right), p, q,\left\lfloor\frac{m}{2}\right\rfloor\right) \| & \\ \operatorname{split}\left(\bar{A}\left(\left\lfloor\frac{m}{2}\right\rfloor(p+q): m(p+q), p, q,\left\lceil\frac{m}{2}\right\rceil\right) ;\right. & \text { if } m>1 \\ \operatorname{rol}\left(\bar{A}\left(\left\lfloor\frac{m}{2}\right\rfloor p: m p+\left\lfloor\frac{m}{2}\right\rfloor q\right),\left\lfloor\frac{m}{2}\right\rfloor q\right) & \\ \bar{A} & \text { if } m=1\end{cases}
$$

Work Proof

 JOHANNES KEPLERUNIVERSITY LINZ

Work of TRIP

Overview

Calculate work of tall matrix transpose

- spanning the divide tree
- combining the nodes via merge/split (itself recursive procedures)
- square-transposing in the leaf nodes

Theorem 1 (Work of TRIP for tall matrices). Let $A_{M, N}$ be a tall matrix that satisfies the power-condition.

Then

$$
W_{1}^{\text {TRIP }}(M, N)=\Theta\left(M N\left(1+\log \frac{M}{N} \log N\right)\right)
$$

Work of TRIP

Proof - TRIP Tree

Spanning Divide Tree

recursion parameter of transpose is $m, m_{0}=M$

$$
\underset{0 \leq i<\lg \frac{M}{N}}{\forall} m_{i+1}=m_{i} / 2
$$

base case is $m=N$ (square sub-matrix)

- $\lg \frac{M}{N}$ levels
- $\frac{M}{N}$ leafs
- $\frac{M}{N}-1$ inner nodes

Combining Nodes via merge

number of inner nodes at level i is 2^{i}
at level i merge $\left(m_{i} / 2, m_{i} / 2, N\right)$ is called

$$
m_{0}=M \Rightarrow m_{i} / 2=M 2^{-(i+1)}
$$

$\begin{aligned} W_{1}^{\text {TRIP }}(M, N)=\underbrace{\frac{M}{N}-1}_{\text {\# of inner nodes }} & +\underbrace{\sum_{0 \leq i<\lg \frac{M}{N}} 2^{i} \underbrace{}_{W_{1}^{\text {merge }}\left(p_{i}, q_{i}, N\right)}}_{\text {combine effort }} \\ & +\underbrace{\frac{M}{N} W_{1}^{\text {square }}(N)}\end{aligned}$
work in leaves of transpose tree (square_transpose)

Jㅡㅡ JOHANNES KEPLER
UNIVERSITY LINZ

Work of TRIP

Proof - Merge Tree

Combining via merge, rotate sub-arrays

recursion parameter n with $n_{0}=N$ base case $n_{j}=1$ for some j

$$
\begin{aligned}
& n_{j+1}=n_{j} / 2 \\
& \Rightarrow n_{j}=N 2^{-j} \text { for } 0 \leq j<\log N
\end{aligned}
$$

- merge call has $\log N$ levels
- $N-1$ inner nodes
- 2^{j} inner nodes at level j of merge tree
- 1 rol call per inner node

$$
\begin{aligned}
W_{1}^{\operatorname{TRIP}}(M, N)=\underbrace{\frac{M}{N}-1}_{\text {\# of inner nodes }} & +\underbrace{\sum_{0 \leq i<\lg \frac{M}{N}} 2 \underbrace{}_{W_{1}^{\text {merge }}\left(p_{i}, q_{i}, N\right)}}_{\text {combine effort }} \\
& +\quad \underbrace{\frac{M}{N} W_{1}^{\text {square }}(N)}
\end{aligned}
$$

work in leaves of transpose tree (square_transpose)

work within inner nodes of the merge tree

$$
\begin{aligned}
& n_{j}=N 2^{-j} \text { for } 0 \leq j<\log N \\
& p_{i}=q_{i}=m_{i} / 2=M 2^{-(i+1)}
\end{aligned}
$$

Lemma 2

$$
\begin{aligned}
W_{1}^{\mathrm{rol}}\left(\frac{n_{j}}{2} p_{i}+\frac{n_{j}}{2} q_{i}, \frac{n_{j}}{2} p_{i}\right) & =W_{1}^{\mathrm{rol}}\left(N M 2^{-i-j-1}, \frac{1}{2} N M 2^{-i-j-1}\right) \\
& =N M 2^{-i-j}-3
\end{aligned}
$$

Work of TRIP

Proof - Merge Tree

$$
\begin{aligned}
W_{1}^{\mathrm{TRIP}}(M, N)=\underbrace{\frac{M}{N}-1}_{\text {\# of inner nodes }} & +\underbrace{\sum_{0 \leq i<\lg \frac{M}{N}} 2 \underbrace{}_{W_{1}^{\text {merge }}\left(p_{i}, q_{i}, N\right)}}_{\text {combine effort }} \\
& +\underbrace{\frac{M}{N} W_{1}^{\text {square }}(N)}
\end{aligned}
$$

work in leaves of transpose tree (square_transpose)

Integrate rol result into merge work

$$
W_{1}^{\text {merge }}\left(p_{i}, q_{i}, N\right)=\underbrace{N-1}_{\text {\# of inner nodes }}+\underbrace{\sum_{0 \leq j<\lg N} 2^{j} W_{1}^{\text {rol }}\left(\frac{n_{j}}{2} p_{i}+\frac{n_{j}}{2} q_{i}, \frac{n_{j}}{2} p_{i}\right)}_{\text {work within inner nodes of the merge tree }}
$$

$W_{1}^{\mathrm{rol}}\left(\frac{n_{j}}{2} p_{i}+\frac{n_{j}}{2} q_{i}, \frac{n_{j}}{2} p_{i}\right)=N M 2^{-i-j}-3$

$$
\begin{aligned}
W_{1}^{\text {merge }}\left(p_{i}, q_{i}, N\right) & =N-1+\sum_{0 \leq j<\log N} 2^{j} W_{1}\left(\operatorname{rol}\left(\frac{n_{j}}{2} p_{i}+\frac{n_{j}}{2} q_{i}, \frac{n_{j}}{2} p_{i}\right)\right) \\
& =N-1+\sum_{0 \leq j<\log N} 2^{j}\left(N M 2^{-i-j}-3\right) \\
& =N-1+\log (N) N M 2^{-i}-3 \sum_{0 \leq j<\log N} 2^{j} \\
& =N-1+\log (N) N M 2^{-i}-3(N-1) \\
& =\log (N) N M 2^{-i}-2(N-1)
\end{aligned}
$$

Work of TRIP

Proof - TRIP Tree

Integrate merge result into TRIP work

$$
\begin{aligned}
& W_{1}^{\text {merge }}\left(p_{i}, q_{i}, N\right)=\log (N) N M 2^{-i}-2(N-1) \\
& \begin{aligned}
& W_{1}^{\text {trip }}(M, N)=(-2 N+3)\left(\frac{M}{N}-1\right)+\left(M N \lg \frac{M}{N} \lg N\right)+\frac{M}{N} W_{1}^{\text {square }}(N) \\
& W_{1}^{\text {Trip }}(M, N)=\left(\frac{M}{N}-1\right)+\sum_{0 \leq i<\lg } \frac{M}{N} 2^{i} W_{1}^{\text {merge }}\left(p_{i}, q_{i}, N\right)+\frac{M}{N} W_{1}^{\text {square }}(N) \\
&=\left(\frac{M}{N}-1\right)+\sum_{0 \leq i<\lg } \frac{M}{N} 2^{i}\left(\lg (N) N M 2^{-i}-2(N-1)\right)+\frac{M}{N} W_{1}^{\text {square }}(N) \\
&=\left(\frac{M}{N}-1\right)+\left(\lg \frac{M}{N} \lg (N) N M-2(N-1)\left(\frac{M}{N}-1\right)\right)+\frac{M}{N} W_{1}^{\text {square }}(N) \\
&=(-2 N+3)\left(\frac{M}{N}-1\right)+\left(M N \lg \frac{M}{N} \lg N\right)+\frac{M}{N} W_{1}^{\text {square }}(N)
\end{aligned}
\end{aligned}
$$

Work of TRIP

Proof - Square Transpose

Recap

```
cilk square_transpose( }A,\mp@subsup{i}{0}{},\mp@subsup{i}{1}{},\mp@subsup{j}{0}{},\mp@subsup{j}{1}{})
    if (i, i- io> ) {
        im}=(\mp@subsup{i}{0}{}+\mp@subsup{i}{1}{})/2
        jm}=(\mp@subsup{j}{0}{}+\mp@subsup{j}{1}{})/2
        spawn square_transpose( }A,\mp@subsup{i}{0}{},\mp@subsup{i}{m}{},\mp@subsup{j}{0}{\prime},\mp@subsup{j}{m}{})\mathrm{ ;
        spawn square_transpose( }A,\mp@subsup{i}{0}{},\mp@subsup{i}{m}{},\mp@subsup{j}{m}{\prime},\mp@subsup{j}{1}{})\mathrm{ ;
        spawn square_transpose( }A,\mp@subsup{i}{m}{},\mp@subsup{i}{1}{},\mp@subsup{j}{m}{\prime},\mp@subsup{j}{1}{})\mathrm{ ;
        if (i, 售)
            spawn square_transpose( }A,\mp@subsup{i}{m}{},\mp@subsup{i}{1}{},\mp@subsup{j}{0}{\prime},\mp@subsup{j}{m}{})\mathrm{ ;
    } else {
        for ( }j=\mp@subsup{j}{0}{};j<\mp@subsup{j}{1}{};j++) 
            swap(A[j, io], A[\mp@subsup{i}{0}{},j]);
        }
    }
}
```


Work of TRIP

Proof - Square Transpose

tree covers upper right matrix: $N(N+1) / 2$ leaves

Lower Bound on \# of inner nodes

purely ternary tree
tree would have $\left\lceil\log _{3}(N(N+1) / 2)\right\rceil$ levels
number of inner nodes:

$$
\sum_{i=0}^{\left\lceil\log _{3}(N(N+1) / 2)-1\right\rceil} 3^{i}
$$

Since

$$
\sum_{k=0}^{m} 3^{i}=\frac{1}{2}\left(3^{m+1}-1\right)
$$

Number of inner nodes is about
$\sum_{i=0}^{\log _{3}(N(N+1) / 2)-1} 3^{i}=\frac{1}{2}\left(3^{\log _{3}(N(N+1) / 2)}-1\right)=\frac{N(N+1)}{4}-\frac{1}{2}=\Theta\left(N^{2}\right)$

Upper Bound on \# of inner nodes

purely quaternary tree

tree would have $\left\lceil\log _{4}(N(N+1) / 2)\right\rceil$ levels
number of inner nodes:

$$
\sum_{i=0}^{\left\lceil\log _{4}(N(N+1) / 2)-1\right\rceil} 4^{i}
$$

Since

$$
\sum_{k=0}^{m} 4^{i}=\frac{1}{3}\left(4^{m+1}-1\right)
$$

Number of inner nodes is about
$\sum_{i=0}^{\log _{4}(N(N+1) / 2)-1} 4^{i}=\frac{1}{3}\left(4^{\log _{4}(N(N+1) / 2)}-1\right)=\frac{N(N+1)}{6}-\frac{1}{3}=\Theta\left(N^{2}\right)$

J́U JOHANNES KEPLER UNIVERSITY LINZ
 Work of TRIP

Proof - TRIP Tree

Integrate square transpose result into TRIP work
work of square transpose (including swapping)
$W_{1}^{\text {square }}(N)=\Theta\left(N^{2}\right)+N(N-1) / 2=\Theta\left(N^{2}\right)$

$$
\begin{aligned}
W_{1}^{\text {TRIP }}(M, N) & =(-2 N+3)\left(\frac{M}{N}-1\right)+\left(M N \lg \frac{M}{N} \lg N\right)+\frac{M}{N} W_{1}^{\text {square }}(N) \\
& =(-2 N+3)\left(\frac{M}{N}-1\right)+\left(M N \lg \frac{M}{N} \lg N\right)+\frac{M}{N} \Theta\left(N^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W_{1}^{\mathrm{TRIP}}(M, N) & =\Theta\left(M+M N \log \frac{M}{N} \log N+M N\right) \\
& =\Theta\left(M N\left(1+\log \frac{M}{N} \log N\right)\right)
\end{aligned}
$$

JOHANNES KEPLER
UNIVERSITY LINZ

Conclusions

JYU JOHANNES KEPLER UNIVERSITY LINZ
 Conclusions

Novel Algorithm TRIP transposes rectangular matrices

- correctly
- in-place
- in highly parallel manner

JYU JOHANNES KEPLER UNIVERSITY LINZ
 Roadmap

1. Work
2. Span
3. Parallelism
