
A Parallel, In-Place, Rectangular Matrix Transpose 
Algorithm

Computational Complexity Analysis

Stefan Amberger

ICA & RISC
amberger.stefan@gmail.com



Table of Contents

1. Introduction

2. Revision of TRIP

3. Analysis of Computational Complexity

a. Work

b. Span

c. Parallelism

d. Generalizations

2



Introduction

3



Work

“execution time on one processor”

i.e.: all vertices of computation dag

approximation: # of nodes of computation dag

Span

“execution time on infinitely many processors”

i.e. length of critical path of computation dag

approximation: # of nodes on critical path

4

Introduction

Introduction to Algorithms Third Edition, p777ff

Computational Complexity of Parallel Algorithms

Parallelism

● average amount of work per step along critical 

path

● maximum possible speedup

● limit on possibility of attaining perfect 

speedup



Revision of TRIP

5



TRIP:

If matrix is rectangular TRIP transposes sub-matrices, then combines the result with 

merge or split

merge:

first rotates the middle part of the array, then recursively merges the left and right parts 

of the array

split:

first recursively splits the left and right parts of the array, then rotates the middle part of 

the array

6



Analysis of Computational 
Complexity

7



Matrix dimensions M x N and N x M

recursive calls are symmetric

TRIP’s recursive call are either all merge or all split

8

Restriction to Powers of Two
“power condition”



Work

9

1. Example: Basic Algorithms
2. TRIP Result & Proof Sketch



10

Work Example
Work of Base Algorithms



Show that under power condition, for M x N matrix

11

Result
Work of TRIP

METHOD

don’t count vertices in computation dag

count inner nodes in recursion tree and swaps

● function calls (nodes in recursive call trees)

● memory accesses (swaps)



Work of TRIP

Work of merge

Work of rol

12

Work of TRIP
Proof Sketch



TRIP recursion is analogous for tall and wide matrices

only difference:

● in merge rol is called before the recursive merge call

● in splitt rol is called after the recursive split call

This difference does not cause a change in the amount of work of TRIP.

13

Work of TRIP
wide matrices



14

Visualization
Work as function of Matrix Dimensions



Span

15

1. Example: Basic Algorithms
2. TRIP Result



16

Span Example
Span of Base Algorithms



Calculate span of tall matrix transpose

count levels and swaps on critical path, that includes

span of

● creating the divide tree

● combining the nodes via merge/split (itself 

recursive procedures)

● square-transposing in the leaf nodes

17

Span of TRIP
Result



18

Visualization
Span as function of Matrix Dimensions



Parallelism

19



Rectangular Matrices

Square Matrices

calculation:

● divide work by span

● case distinction rectangular / square

● simplification using Landau symbols

20

Result



Generalizations

21

power condition unsatisfied



22

Example: 7 x 5 Matrix



23

Generalization
Power Condition not Satisfied



24

Generalization
Power Condition not Satisfied



25

Generalization
Power Condition not Satisfied



Thank you



Revision of TRIP

27



TRIP Algorithm

If matrix is rectangular TRIP transposes sub-matrices, then combines the result with 

merge or split

28



merge combines the transposes of sub-matrices of tall matrices

merge first rotates the middle part of the array, then recursively merges the left and right 

parts of the array

rol(arr, k) … left rotation (circular shift) of array arr by k elements
29

merge Algorithm



split combines the transposes of sub-matrices of wide matrices

split first recursively splits the left and right parts of the array, then rotates the middle 

part of the array

split and merge are inverse to each other
30

split Algorithm



Work Proof

31



Calculate work of tall matrix transpose

● spanning the divide tree

● combining the nodes via merge/split (itself 

recursive procedures)

● square-transposing in the leaf nodes

32

Work of TRIP
Overview



Combining Nodes via merge

33

Work of TRIP
Proof - TRIP Tree

Spanning Divide Tree



34

Work of TRIP
Proof - Merge Tree

Combining via merge, rotate sub-arrays



Integrate rol result into merge work

35

Work of TRIP
Proof - Merge Tree



Integrate merge result into TRIP work

36

Work of TRIP
Proof - TRIP Tree



Recap

37

Work of TRIP
Proof - Square Transpose



Lower Bound on # of inner nodes

purely ternary tree

Upper Bound on # of inner nodes

purely quaternary tree

38

Work of TRIP
Proof - Square Transpose



Integrate square transpose result into TRIP work

work of square transpose (including swapping)

39

Work of TRIP
Proof - TRIP Tree



Conclusions

40



Novel Algorithm TRIP transposes rectangular matrices

● correctly

● in-place

● in highly parallel manner

41

Conclusions



Roadmap

1. Work

2. Span

3. Parallelism

42


