JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Stefan Amberger

ICA & RISC
amberger.stefan@gmail.com

A Parallel, In-Place, Rectangular Matrix Transpose
Algorithm

Computational Complexity Analysis

4
JU Table of Contents

1. Introduction
2. Revision of TRIP

3. Analysis of Computational Complexity

a. Work
b. Span
c. Parallelism

d. Generalizations

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Introduction

JXU .
pri B [o) 4 €0) duction

Computational Complexity of Parallel Algorithms

Work W;

“execution time on one processor”

i.e.: all vertices of computation dag
approximation: # of nodes of computation dag

Span W
“execution time on infinitely many processors”

i.e. length of critical path of computation dag
approximation: # of nodes on critical path

Parallelism

Introduction to Algorithms Third Edition, p777ff

|14}

Woo

average amount of work per step along critical
path

maximum possible speedup

limit on possibility of attaining perfect
speedup

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Revision of TRIP

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

TRIP:
If matrix is rectangular TRIP transposes sub-matrices, then combines the result with

merge or split

merge:
first rotates the middle part of the array, then recursively merges the left and right parts
of the array

split:
first recursively splits the left and right parts of the array, then rotates the middle part of
the array

Analysis of Computational
Complexity

wmees RESTriCtion to Powers of Two

“power condition”

Matrix dimensions M x N and N x M

(FkeN: N=2")A (Il eN: M =2'N)

recursive calls are symmetric

TRIP’s recursive call are either all merge or all split

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Work

1. Example: Basic Algorithms
2. TRIP Result & Proof Sketch

JXU
mmsme WOrk Exam P le

Work of Base Algorithms

cilk reverse(A, mg, mi, 1) {
if (I>1) {
Im =1/2;
spawn reverse (A, mo, mi, lm);
spawn reverse (A, mo+ilm, mi—Im, 1 —1ln);
} else {
swap(A, mo, mi1—1);
}
}

Lemma 1 (Work of reverse) If length n = m; —mgq of
array A is even, then

W{‘E'UET‘SE(TL) =1 — 1

Proof. initially [= n/2, base case [=1
binary tree has n/2 — 1 nodes

1 swap per leaf: n/2 swaps

Wreverse () — 72_1 — 14 g =n-—1

cilk rol(A, n, k) {
spawn reverse(a, 0, k);
spawn reverse(a, k, n);
sync;
spawn reverse(a, 0, n);

}

Lemma 2 (Work of rol) If length n of array A is even,
then the work of rol(n, n/2) is

Wroln, n/2) =2n—3

Proof. algorithm not recursive

half array rotations: work n/2 — 1 each
full array rotation: work n — 1

Wil(n, n/2) =2 (g - 1) +(n—1)=2n-3

10

JXU
e RESU It

Work of TRIP

Show that under power condition, for M x N matrix

WPRF(M, N) =06 (MN (1 + log % log N))

and in general:

max(M, N)

BPr NY=@ [MN (14 log 22X V)
WimH (M, N) @((+Ogmin(M,N)

log min(M, N)))

METHOD
don’t count vertices in computation dag
count inner nodes in recursion tree and swaps

e function calls (nodes in recursive call trees)
® memory accesses (swaps)

11

Jzu Work of TRIP

Proof Sketch
Work of TRIP
M ; M
WIRF (M, N) = =1+ > 2WP (i, g N)+ W ()
S— 0<i<lg 4 ~ ~ -
of inner nodes ~ s ~» work in leaves of transpose tree (square_transpose)
combine effort
Work of merge
merge (. _ _ jrolﬁ.ﬁ.ﬁ.)
W (pi, Gi, N) N-1 + Z Wy (2p1+ 2‘1@: zpz

of inner nodes PSj<lg N

7

w
work within inner nodes of the merge tree

Work of rol

Wi (EJP: + Ej% Ejpz) =NM27*7 -3

12

Jzu Work of TRIP

wide matrices
TRIP recursion is analogous for tall and wide matrices
only difference:

® inmerge rol is called before the recursive merge call
e insplitt roliscalled after the recursive split call

This difference does not cause a change in the amount of work of TRIP.

Corollary 1 (Work of TRIP). Let Ay, n be a tall, wide or
square matriz that satisfies the power condition. Then

TRIP _ max(M, N) .
Wit (M, N)=0 (MN (1—|—log min(M,) log min(M, N)

13

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Visualization

Work as function of Matrix Dimensions

work

60000000

45000000

30000000

15000000

asymptotic complexity

o8]

6 10 14

matrix configurations. 28 x 2420-])

18

— gsymptotic
work

14

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Span

1. Example: Basic Algorithms
2. TRIP Result

15

JXU
PN pan Examp le

Span of Base Algorithms

cilk reverse(A, mg, mi, 1) {
if (I>1) {
Im =1/2;
spawn reverse (A, mo, mi, lm);
spawn reverse (A, mo+ilm, mi—Im, 1 —1ln);
} else {
swap(A, mo, mi1—1);

Lemma 3 (Span of reverse). If length n of array A is a
power of two, then

WEr*e(n) = log 7 +1

Proof. initially [= n/2, base case I =1
binary tree has log n/2 levels

1 swap in leaf adds 1 to span

W (n) = log 7 + 1

cilk rol(A, n, k) {
spawn reverse(a, 0, k);
spawn reverse(a, k, n);
sync;
spawn reverse(a, 0, n);

Lemma 4 (Span of rol). If length n of array A is a power
of two, then the span of rol(n, n/2) is

Wrol(n) =log 27'n +log 272n + 3

Proof. algorithm not recursive

rol consists of three reversals of lengths n/2, n/2 and n
first two are in parallel

Lemma 3

adding span 1 for high-level function calls (cf. inner nodes)

Wl (n, n/2) = log g-i-log g+3 =log 2" 'n+log 2 *n+3

O

16

Jzu Span of TRIP

Result

Calculate span of tall matrix transpose
count levels and swaps on critical path, that includes
span of

® creating the divide tree

e combining the nodes via merge/split (itself
recursive procedures)

® square-transposing in the leaf nodes

Theorem 1 (Span of TRIP for tall matrices). Let Apr,n be
a tall matriz that satisfies the power condition.

Then
M M M
TRIP _ M il —
W (M, N) =log N+log i log N (3 log N + log N)+log N+1
in general
WP (M, N) =log %—l—log % log n (3 log n + log %)—I—]og n+1

where m = max(M, N) and n = min(M, N)

17

J¥U
Jonaes epLen Visualization

Span as function of Matrix Dimensions

Span as Function of Matrix Configuration
1600

— asymptotic
span
1200
&
o Boo
400
]

r2

] 10 14 18

matrix configurations; 2% x 2420

18

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Parallelism

JXU
e RESU It

Rectangular Matrices

) MN
log M/N+log N

Square Matrices

O (i w)

calculation:
e divide work by span
e case distinction rectangular / square
e simplification using Landau symbols

paralielism

Counted vs Asymptotic Parallelism
100000 — counted

— asymptotic

75000

25000

(]
o
—
(=]
—
=
i
(=]

matrix configurations. 2% x 2M20-)

20

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Generalizations

power condition unsatisfied

21

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Example: 7 x 5 Matrix

22

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

1500000 2000000 2500000 3000000

work
500000 1000000

0

Generalization

Power Condition not Satisfied

TRIP work: divide by bisecting

T T T
100 1000 10000

-
-
o

number of rows

work

1000000 1500000

500000

TRIP work: divide by modified bisection

T T T T
10 100 1000 10000

number of rows

23

JXU L.
e (3@NEIQ lization

Power Condition not Satisfied

TRIP span: divide by bisecting TRIP span: divide by modified bisection
o
o _|
S
o
g 8-
S 4
o S
©
= c
@ o ®
Q o o
] © 2
o
s
<
o
S
<
o
s
o N
S 4
N
o o
T T T T T T T T T T
1 10 100 1000 10000 1 10 100 1000 10000
number of rows number of rows

24

JXU

—mems (QeNeralization

UNIVERSITY LINZ

parallelism

Power Condition not Satisfied

TRIP parallelism: divide by bisecting

4000

3000
|

2000
|

1000
|

T T T T T
1 10 100 1000 10000

number of rows

parallelism

4000

3000

2000

1000

TRIP parallelism: divide by modified bisection

T
100

number of rows

T
1000

T
10000

25

Thank you

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Revision of TRIP

meseme TRIP Al gor ithm

If matrix is rectangular TRIP transposes sub-matrices, then combines the result with

merge or split

TRIP(A4, m, n) = <

TRIP(A(0: [%], 0:n), [5], n) |

TRIP(A([F] :m, 0:n), [F], n); ifm>n
merge(A: L%J: {%—I: n)

TRIP(AQ: m, 0: |3, m, [3]) |
TRIP(A0:m, [3]:n), m, [§]); ifm<n
Sp]it(A, L%J: {%L m)

square_transpose(A, n) ifm=mn

28

4 .
JU merge Algorlth m

merge combines the transposes of sub-matrices of tall matrices

merge first rotates the middle part of the array, then recursively merges the left and right
parts of the array

(ro](E(L_%Jp :np+ | 51q), [5]p);
_ merge(A(0: [5](p+a), p, ¢, [5]) | if n>1
merge(A, p, g, n) = merge(A(|5|(p+q) :n(p+4q)), p, ¢, |5])

A ifn=1

\

rol(arr, k) ... left rotation (circular shift) of array arr by k elements
29

JXU

sumsee S pl it Alg orithm

split combines the transposes of sub-matrices of wide matrices

split first recursively splits the left and right parts of the array, then rotates the middle

part of the array

split(4, p, g, m) = <

\

split(A(0: [2|(p+4)), p, ¢, [Z]) |

split(A(| 2 (p+ q) - m(p+9)), p, ¢, [21); if m > 1
rol(A(L g Jp:mp+ [T]9), [3]a)
A if m=1

split and merge are inverse to each other

30

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Work Proof

Jzu Work of TRIP

Overview

Calculate work of tall matrix transpose

® spanning the divide tree

e combining the nodes via merge/split (itself
recursive procedures)

® square-transposing in the leaf nodes

Theorem 1 (Work of TRIP for tall matrices). Let Ay n

be a tall matrixz that satisfies the power-condition.

Then

WIEP(M, N) =0 (MN (1—|—log % log N))

32

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Work of TRIP

Proof - TRIP Tree

Spanning Divide Tree

recursion parameter of transpose is m, mg = M

v My

0<i<lg &

base case is m = N (square sub-matrix)

.
i)

% levels
leafs

— 1 inner nodes

N

WIS (0,) =

Combining Nodes via merge

number of inner nodes at level 7 is 2°

at level ¢ merge(m;/2, m;/2, N) is called
my = M = m1/2 = M2_(i+1)

M
ﬁ 1 + Z ﬁymerge (p“ @, N)]
S—— 0<i<lg ‘Kf
of inner nodes —
combine effort
+ ‘Z;\{ quuare (N)

~

"

work in leaves of transpose tree (square_transpose)

33

Jzu Work of TRIP

Proof - Merge Tree

Combining via merge, rotate sub-arrays

recursion parameter n with ng = N
base case n; = 1 for some j
i1 = /2

= n; =N2J for 0 < j <log N.

merge call has log N levels

N — 1 inner nodes

27 inner nodes at level j of merge tree

1 rol call per inner node

M l
mep (M, N) = N —1 + Z AWPE (. qi, N l

0<i<lg 4 N

of inner nodes

combine effort

M square
+ Nwlq (N)
————

work in leaves of transpose tree (square_transpose)

T T s T,
Wi (i g N)= N -1+ >, 2w (?jpz' + ?qu, ?Jpz')
of inner nodes 95j<1g N

o

v
work within inner nodes of the merge tree

=N2Jfor0<j<log N
Pi =q; = m1/2 = Mz_(i+1)

Lemma 2

1 o
Wit (S + Zai, Tpi) = Wi (NMQ’Jl, 2NMzHl)

=NM2" 73

34

Jzu Work of TRIP

Proof - Merge Tree

Integrate rol result into merge work

WP (p, qi, N)= N—-1 + Y 2iwpe (?in+_JQia ?in)

2
#£ of inner nodes PSJ <lg N

o

W
work within inner nodes of the merge tree

el (5 by) S %pi) = NM27"9 -3

Wi (pi, ¢, N)=N -1+ Z 2wy (rol (

0<j<log N

W (M, N) =

2

=N-1+ » 2 (NM27"7-3)

0<j<log N
=N-—1+log (N)NM2™*

=N—1+1log (N)NM2™*
=log (N)NM2™* —2(N —1)

-3 Z

0<j<log N

_3(N-1)

2

97

M
o+ X e

0<i<lg 4 N

of inner nodes

combine effort

M square
+ Nwlq (N)
————

work in leaves of transpose tree (square_transpose)

T, n, T
“Lpi + 2aqi, —jpz))

2

35

JXU 5 |
WERP (M, N)= — -1 + Z 2'W (ps, qi, N)
N
mesme WoOrk of TRIP i ¥

of inner nodes

combine effort

Proof - TRIP Tree + W ()

| i —

work in leaves of transpose tree (square_transpose)

Integrate merge result into TRIP work
W "®(p;, giy, N) =1log (N)NM27 " —2(N —1)

WRP(M, N) = (-2N +3) (% - 1) + (MN lg % lg N) + %Wfq““e(fv)

M i pxs7merge M square
WERIP(Ma N) = (N - 1) + Z 21W1 g (pza i N)+ leq (N)
0<i<lg %
(1)
= (?\4{ - 1) + Z 2t (lg (N)NMQ*Z' —2(N — 1)) 4 %Wlsquare(N)
0<i<lg ¥
B N M M M square

M M M square

36

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Recap

Work of TRIP R &

N——
of inner nodes

Proof - Square Transpose

cilk square_transpose(A, i, 41, Jo, 71) {
if (i1—i0>1) {
im = (f0 +141)/2;
Jm = (Jo + J1)/2;
spawn square_transpose (A, io, im, Jo, Jm);
spawn square_transpose (A, o, im, Jm, J1);
spawn square_transpose (A, im, 41, Jm, J1);
if (i1 <jo)
spawn square_transpose (A, im, 1, Jo, Jm);
} else {
for (j=jo; j<ji; j++) {
SW&p(A[j, 3.0], A[Z.(), j]),
}

}
}

+ Z 2iW1merge (pi: i, N)

+

0<i<lg &

combine effort

Wlsquare (N)

—_——
work in leaves of transpose tree (square_transpose)

37

JXU 5! |
WERP (M, N)= — -1 + Z 2'W (ps, qi, N)
N
mesme WoOrk of TRIP i ¥

of inner nodes

combine effort

Proof - Square Transpose + Wi (V)

| i —

work in leaves of transpose tree (square_transpose)

tree covers upper right matrix: N(N + 1)/2 leaves

Lower Bound on # of inner nodes Upper Bound on # of inner nodes
purely ternary tree purely quaternary tree
tree would have [loggz(N (N + 1)/2)] levels tree would have [log, (N (N + 1)/2)] levels
number of inner nodes: number of inner nodes:
[logg (N(N+1)/2)-11 [logy (N(N+1)/2)-11
3t Z 4t
=0 =0
Since Since
1
+1 +1
S0) SRR
Number of inner nodes is about Number of inner nodes is about
logg(N(N+1)/2)—1 logs(N(N+1)/2)-1
;1 NN+1) 1 o1 NN+1) 1
3i— (3log3(N(N+1)/2) _ 1) MV T L g(N? 4i— 2 (4log4(N(N+1)/2) _ 1) NV T (N2
=0 i ! o go 3 6 3 = oW

38

Jzu Work of TRIP

Proof - TRIP Tree

Integrate square transpose result into TRIP work
work of square transpose (including swapping)

W3e(V) = O(N2) + N(N — 1)/2 = O(N?)

WM, N) = (2N +3) (1

= (—2N +3) (%

Which simplifies to

WHRFP(M, N) =06 (M—I—MN log % log N—I—MN)

M
=0 (MN (1+log — log N

+ (MN lg

+ (MN lg

M)
WERP (M, N)= — -1 + Z 2'W (ps, qi, N)

zl8 z[-

N

0<i<lg ¥
of inner nodes

combine effort

M square
+ Nwlq (N)
————

work in leaves of transpose tree (square_transpose)

M
lg N) + ﬁWfq“are(N)

M 2
lg N) + ﬁ@(N)

39

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Conclusions

JXU .
e CONC lusions

Novel Algorithm TRIP transposes rectangular matrices

e correctly
® in-place
® in highly parallel manner

41

NNNNNNN
UUUUUUU

1.

2.

3.

-z= Roadma P

Work
Span

Parallelism

42

