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Aim of the Thesis

Aim of the Thesis

Investigate the behaviour of software specification languages and
tools on mathematical algorithms:

show how mathematical algorithms can be modeled with software
specification languages
investigating how far simulating, visualizing, model checking and
verifying is possible
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Aim of the Thesis Formal Modeling

Formal Modeling I

Modeling a System
transfer the system into an abstract model
translation into some software specification language

Simulation
execution of the formal model which imitates the execution of the real
system

Visualization
“pretty-printed“ (graphically illustrated) run of the model
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Aim of the Thesis Formal Modeling

Formal Modeling II

Specification
formally state the properties the program shall have
expressed in the software specification language

Model Checking
investigation whether the system model fulfills the specified property
by elaborating all possible executions

Verification
investigation whether the system model fulfills the specified property
by mathematical proofs
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DPLL algorithm

DPLL algorithm

solving propositional satisfiability problem
deciding if a formula in conjunctive normal form is satisfiable
backtracking based search algorithm

Require: (F, n)
Input condition: n ≥ 1 ∧ F ∈ Formulan

Ensure: s
Output condition: s = 1⇔ (F , n) is satisfiable
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DPLL algorithm

Input and output conditions

Input condition:
Literaln := {l ∈ Z |0 < l ≤ n ∨ −n ≤ l < 0}

Clausen := {c ∈ P(Literaln) |∀l ∈ Z : ¬(l ∈ c ∧ −l ∈ c)}

Formulan := P(Clausen)

Output condition:
Valuationn := Clausen

(F, n) is satisfiable :⇔ ∃v ∈ Valuationn : ∀c ∈ F : ∃l ∈ c : l ∈ v︸ ︷︷ ︸
ValSatClause(c,v)︸ ︷︷ ︸

ValSatFormula(F,v)
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DPLL algorithm

Pseudo-code

Algorithm DPLL(Φ) recursive

Require: A formula Φ
Ensure: A truth value

1: if Φ is empty then
2: return true
3: else if Φ contains empty clause then
4: return false
5: end if
6: select a variable v occurring in Φ
7: if DPLL(substitute(Φ, v, true))=true

then
8: return true
9: else

10: return DPLL(substitute(Φ, v, false))
11: end if

Algorithm DPLL(Φ) iterative

Require: A formula Φ
Ensure: A truth value

1: stack ∈ empty
2: while true do
3: if Φ is empty then
4: return true
5: else if Φ contains an empty clause

then
6: if stack.isEmpty() then
7: return false
8: end if
9: Φ← stack.pop()

10: else
11: select a variable v occurring in Φ
12: stack.push(substitute(Φ, v, false))
13: Φ← substitute(Φ, v, true)
14: end if
15: end while
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DPLL algorithm

Example
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DPLL algorithm

Example
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Tools TLA/PlusCal

TLA/PlusCal

combines temporal logic with a logic of actions
everything is described as a logical formula

PlusCal is an algorithmic language
a PlusCal algorithm is translated to a TLA specification by the
PlusCal translator

TLC model checker generates a finite set of initial states and
performs a breadth-first search
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Tools Alloy

Alloy

specification language for expressing structural constraints and
behaviour of a system
based on relational logic
used for finite models

generates instances of models
simulates the execution of operations
check user-specified properties of a model
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Tools Alloy

Visualization of an instance
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Tools Event - B

Event - B

describe a system with events
develop a series of more and more accurate models of the system

automatically generates proof obligations for each level of
abstraction
use of automatic provers
use of interactive provers
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Conclusion & Current work

Conclusion & Current work I

TLA
easy implementation in PlusCal
language is based on mathematics
model checking is comprehensive and traceable
scope for model checking is defined by the values of the constants
no verification

Alloy
complicated implementation
gain visualizations of the algorithm
model checking is not traceable
scope for model checking needs to be defined for each object
no verification
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Conclusion & Current work

Conclusion & Current work II

Event-B
specification with events and invariants
no model checking
automatic verification only possible for simple data types
interactive prover is not well documented
verification calculus seems not complete
idea of refinement is not really applicable

Current work
analysis of Dijkstra’s Shortest Path Algorithm
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