
Formally Modeling and Analyzing
Mathematical Algorithms

with Software Specification Languages & Tools
Status Report on Master Thesis

Daniela Ritirc

07.12.2015

Daniela Ritirc 07.12.2015 1 / 21



Table of Contents

1 Aim of the Thesis
Formal Modeling

2 DPLL algorithm

3 Tools
TLA/PlusCal
Alloy
Event - B

4 Conclusion & Current work

Daniela Ritirc 07.12.2015 2 / 21



Aim of the Thesis

Aim of the Thesis

Investigate the behaviour of software specification languages and
tools on mathematical algorithms:

show how mathematical algorithms can be modeled with software
specification languages
investigating how far simulating, visualizing, model checking and
verifying is possible

Daniela Ritirc 07.12.2015 3 / 21



Aim of the Thesis Formal Modeling

Formal Modeling I

Modeling a System
transfer the system into an abstract model
translation into some software specification language

Simulation
execution of the formal model which imitates the execution of the real
system

Visualization
“pretty-printed“ (graphically illustrated) run of the model

Daniela Ritirc 07.12.2015 4 / 21



Aim of the Thesis Formal Modeling

Formal Modeling II

Specification
formally state the properties the program shall have
expressed in the software specification language

Model Checking
investigation whether the system model fulfills the specified property
by elaborating all possible executions

Verification
investigation whether the system model fulfills the specified property
by mathematical proofs

Daniela Ritirc 07.12.2015 5 / 21



DPLL algorithm

DPLL algorithm

solving propositional satisfiability problem
deciding if a formula in conjunctive normal form is satisfiable
backtracking based search algorithm

Require: (F, n)
Input condition: n ≥ 1 ∧ F ∈ Formulan

Ensure: s
Output condition: s = 1⇔ (F , n) is satisfiable

Daniela Ritirc 07.12.2015 6 / 21



DPLL algorithm

Input and output conditions

Input condition:
Literaln := {l ∈ Z |0 < l ≤ n ∨ −n ≤ l < 0}

Clausen := {c ∈ P(Literaln) |∀l ∈ Z : ¬(l ∈ c ∧ −l ∈ c)}

Formulan := P(Clausen)

Output condition:
Valuationn := Clausen

(F, n) is satisfiable :⇔ ∃v ∈ Valuationn : ∀c ∈ F : ∃l ∈ c : l ∈ v︸ ︷︷ ︸
ValSatClause(c,v)︸ ︷︷ ︸

ValSatFormula(F,v)

Daniela Ritirc 07.12.2015 7 / 21



DPLL algorithm

Pseudo-code

Algorithm DPLL(Φ) recursive

Require: A formula Φ
Ensure: A truth value

1: if Φ is empty then
2: return true
3: else if Φ contains empty clause then
4: return false
5: end if
6: select a variable v occurring in Φ
7: if DPLL(substitute(Φ, v, true))=true

then
8: return true
9: else

10: return DPLL(substitute(Φ, v, false))
11: end if

Algorithm DPLL(Φ) iterative

Require: A formula Φ
Ensure: A truth value

1: stack ∈ empty
2: while true do
3: if Φ is empty then
4: return true
5: else if Φ contains an empty clause

then
6: if stack.isEmpty() then
7: return false
8: end if
9: Φ← stack.pop()

10: else
11: select a variable v occurring in Φ
12: stack.push(substitute(Φ, v, false))
13: Φ← substitute(Φ, v, true)
14: end if
15: end while

Daniela Ritirc 07.12.2015 8 / 21



DPLL algorithm

Example

Daniela Ritirc 07.12.2015 9 / 21



DPLL algorithm

Example

Daniela Ritirc 07.12.2015 10 / 21



DPLL algorithm

Example

Daniela Ritirc 07.12.2015 11 / 21



DPLL algorithm

Example

Daniela Ritirc 07.12.2015 12 / 21



DPLL algorithm

Example

Daniela Ritirc 07.12.2015 13 / 21



DPLL algorithm

Example

Daniela Ritirc 07.12.2015 14 / 21



DPLL algorithm

Example

Daniela Ritirc 07.12.2015 15 / 21



Tools TLA/PlusCal

TLA/PlusCal

combines temporal logic with a logic of actions
everything is described as a logical formula

PlusCal is an algorithmic language
a PlusCal algorithm is translated to a TLA specification by the
PlusCal translator

TLC model checker generates a finite set of initial states and
performs a breadth-first search

Daniela Ritirc 07.12.2015 16 / 21



Tools Alloy

Alloy

specification language for expressing structural constraints and
behaviour of a system
based on relational logic
used for finite models

generates instances of models
simulates the execution of operations
check user-specified properties of a model

Daniela Ritirc 07.12.2015 17 / 21



Tools Alloy

Visualization of an instance

Daniela Ritirc 07.12.2015 18 / 21



Tools Event - B

Event - B

describe a system with events
develop a series of more and more accurate models of the system

automatically generates proof obligations for each level of
abstraction
use of automatic provers
use of interactive provers

Daniela Ritirc 07.12.2015 19 / 21



Conclusion & Current work

Conclusion & Current work I

TLA
easy implementation in PlusCal
language is based on mathematics
model checking is comprehensive and traceable
scope for model checking is defined by the values of the constants
no verification

Alloy
complicated implementation
gain visualizations of the algorithm
model checking is not traceable
scope for model checking needs to be defined for each object
no verification

Daniela Ritirc 07.12.2015 20 / 21



Conclusion & Current work

Conclusion & Current work II

Event-B
specification with events and invariants
no model checking
automatic verification only possible for simple data types
interactive prover is not well documented
verification calculus seems not complete
idea of refinement is not really applicable

Current work
analysis of Dijkstra’s Shortest Path Algorithm

Daniela Ritirc 07.12.2015 21 / 21


	Aim of the Thesis
	Formal Modeling

	DPLL algorithm
	Tools
	TLA/PlusCal
	Alloy
	Event - B

	Conclusion & Current work

