JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Stefan Amberger

ICA & RISC
amberger.stefan@gmail.com

A Parallel, In-Place, Rectangular Matrix Transpose
Algorithm

Description of Algorithm and Correctness Proof

4
JU Table of Contents

1. Introduction
2. Description of Transpose Algorithm

3. Proof of Correctness

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Introduction

JXU .
mumme RECta ngu lar Matrices

Large rectangular matrices are abundant

Discrete Fourier transforms

Finite element method

Raster images in earth observation
Computer graphics (e.g. radiosity equation)
etc.

J::U Current Situation in Computing

Moore’s Law Memory
e Number of transistors on a chip doubles every often the limiting factor
two years
e Maximum clock frequencies reached in 2005 e medium-sized problems on mobile /
e Maximum power density reached embedded device

e large problem on computer

— multiple cores on CPUs
Example:

100.000 x 100.000 matrix: 75 GB

Need parallel, in-place algorithms

JY .
U Rectangular Matrix Transpose

Mathematical Concept vs Implementation

Concept of Transpose Implementation on Computer
two-dimensional one-dimensional
double A[M][N], B[N][M]; double A[M-N], B[N-M];
for (i=0; i<M; it++) for (i=0; i< M; it++)

for (=0; j<N; j++) for (j=0; j<N; j++)

Blj][i] = Ali][5]; Blj-M+i] = A[i-N+j];

=y, Rectangular Matrix Transpose

UNIVERSITY LINZ

In-Place Transpose

In-Place Transpose of Square Matrix In-Place Transpose of Rectangular
Matrix

using one temporary variable

M x (M-1)/2 permutation cycles one-dimensional

double A[M - M];
for (i=0; i<M; it++) Mz mod MN — 1 if 24 MN-—1
for (j=0; j<i; j++) m(@) = { MN -1 if 2= MN—1
tmp = A[j-M +1i];
Alj-M+i] = Ali-M+j];
A[’i ' M+J] = tmp; 7, like every permutation, can be decomposed into
disjoint, independent cycles

Y .
JU Rectangular Matrix Transpose

Parallel In-Place Transpose

Common Approach Our Approach

Independence of Permutation Cycles Divide and conquer
® Limited Parallelism Transpose of Rectangular matrices, In-place and in
® Problem-dependent parallelism Parallel (TRIP)

® Permutation cycles are inherently serial
e Highly parallel for all problem-sizes (see

presentation 2)
® In-place
® Recursive

Description of Transpose
Algorithm

meseme TRIP Al gor ithm

If matrix is rectangular TRIP transposes sub-matrices, then combines the result with

merge or split

TRIP(A4, m, n) = <

TRIP(A(0: [%], 0:n), [5], n) |

TRIP(A([F] :m, 0:n), [F], n); ifm>n
merge(A: L%J: {%—I: n)

TRIP(AQ: m, 0: |3, m, [3]) |
TRIP(A0:m, [3]:n), m, [§]); ifm<n
Sp]it(A, L%J: {%L m)

square_transpose(A, n) ifm=mn

10

XY TRIPExample

Transpose of a Tall Matrix

original matrix is tall — it is divided by TRIP
and the sub-matrices are in-place transposed

(12 3) L2 3
4 5 6 _
A=|7 8 99— _.[, & o
10 11 12 o
\13 14 15) I

11

12

13

14

15

11

A4
JU TRIP Exam pIe the transposed sub-matrices are

Transpose of a Tall Matrix combined by merge

1 4 2 5 3 6 7 18 | 13 8 11 | 14 9
merge(2, 3, 3)
1 4 2 5 3 B 7 18 | 13 8 11 | 14 9
n=3 rol(2*2)
1 4 2 1 4 7 |18 | 13 2 5 3 6 8 |11 | 14 g
p=2
c 3 6 merge(2, 3, 1) merge(2, 3, 2)
—_— 1 4 7 18 | 13 2 5 3 6 8 11 | 14 9
m=25 7 la 13
base case rol(1*2)
8 11 14 q=3
1 4 7 18 | 13 2 5 8 11 | 14 3 6 g
9 1215 merge(2, 3, 1) merge(2, 3,
1 4 7 18 | 13 2 5 8 11 | 14 3 6 9
base case base case
1 4 7 i@ | 13 2 5 8 11 | 14 3 6 9

A4
JU TRIP Example the merged result can be reinterpreted

Transpose of a Tall Matrix as the transpose of the original matrix

1 4 2 5 3 6 7 18 | 13 8 11 | 14 9 12 | 15
merge(2, 3, 3)
1 4 2 5 3 6 7 18 | 13 8 11 | 14 9 12 | 15
rol(2*2)
1 4 7 |18 | 13 2 5 3 6 8 (11| 14 9 (12 | 15
merge(2, 3, 1) merge(2, 3, 2) 1 4 7 10 13
1| 4 7 | 18 | 13 2 | s 3| 6 g |11 | 14 g 12|15 —| 2 5 8 11 14| =
base case rol(1*2) 3 6 9 12 15
1 4 7 18 | 13 2 5 B 11 | 14 3 6 g 12 | 15
merge(2, 3, 1) merge(2, 3, 1)
1 4 7 18 | 13 2 5 8 11 | 14 3 6 g 12 | 15
base case base case
1 4 7 18 | 13 2 5 8 11 | 14 3 6 9 12 | 15

4 .
JU merge Algorlth m

merge combines the transposes of sub-matrices of tall matrices

merge first rotates the middle part of the array, then recursively merges the left and right
parts of the array

(ro](E(L_%Jp :np+ | 51q), [5]p);
_ merge(A(0: [5](p+a), p, ¢, [5]) | if n>1
merge(A, p, g, n) = merge(A(|5|(p+q) :n(p+4q)), p, ¢, |5])

A ifn=1

\

rol(arr, k) ... left rotation (circular shift) of array arr by k elements
14

JXU

sumsee S pl it Alg orithm

split combines the transposes of sub-matrices of wide matrices

split first recursively splits the left and right parts of the array, then rotates the middle

part of the array

split(4, p, g, m) = <

\

split(A(0: [2|(p+4)), p, ¢, [Z]) |

split(A(| 2 (p+ q) - m(p+9)), p, ¢, [21); if m > 1
rol(A(L g Jp:mp+ [T]9), [3]a)
A if m=1

split and merge are inverse to each other

15

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Correctness Proof

Y
JU Correctness of merge

Structure of Matrix and Transpose

Matrix is split into two parts — transpose of Matrix is split into two parts

/ h'
Ap \ >p
A= , AT = AT Al
A > q N PN ,
./, IR

17

Y
JU Correctness of merge

Structure of Matrix after In-Place Transposition of Sub-Matrices

In-place transposition of sub-matrices results in reshaped transposes of sub-matrices

> D > D
A= 4 T = <
'
Aq >q Tq >q
\) | \) |
\—v—/ \—v—/
N N

18

mesme COrrectness of merge

Proof Sketch

Prove by induction: merge transforms T into the transpose of A

(

~
I

)

\

mesme COrrectness of merge

Lemma (merge)

Lemma 1 Let A be a matrix of dimension M x N.
Then

merge(T, p, g, N) = AT

if T is composed of the reshaped transposes of A, and A, as described above,
forp, q >0 withp+qg= M.

20

mesme COrrectness of merge
Proof of Lemma (merge) 7 _ 11 (A—;)', I (@)_ L A=]

Base Case (k=1)

T=(47), (A7), =447 = T1 ((4),-(4]),) =47

Induction Hypothesis (kO a.b.f)

merge transforms the array T from the shape
T _ AT AT
= H (Ap)?;' H (Aq)z'
0<i<ko 0<i<ko

to the shape

21

JY
U Correctness of merge

Proof of Lemma (merge) 7 _ (A_;) 1 (A—T) | AT ((A—;) _

0<i<N ' 0<i<N 0<i<N

Induction Step (kO — kO+1)

= I @), II (4),

7
0<i<ko+1 0<i<ko+1

merge matches recursive case

rol(E(LjOT“Jp :np + [Bt |g), [Etl]p);
merge(A(0 : |5t [(p+q)), p, q, [E5EL]) ||
merge(A(L%J (p+q):ko+1(p+4q)), p, q, [%D

rol transforms T to

- Tl (A_;)z 1 (A—;)% 11 (@)i' 11 (E)z

0<i<| ott| 0<i<| Botl | | Bt | <i<kot1 | Fotd | <i<ho+1

22

mesme COrrectness of merge
Proof of Lemma (merge) 7 _ 11 (A—;)', I (ﬁ)_ L A=] ((A;)'-(A_;r)_)

finally: recursive merge calls on sub-arrays

- I (&), I @), I @) 11
0<i<| ott| 0<i<| Botl | | Fotl | <i<kot1 | Fotd | <i<ho+1
lI.H.
r— 11 (&), (4)) ((47),- (47),)
0<ic| R0t | v ' B0t | ikt v

23

mesme CoOrrectness of split

analogous, by induction

A:(A, A,)}M
q
T:(T,

p

/ 3
A;_ \ ? P
AT = 4
Al 0 a
q
\)

24

A4
JU Correctness of TRIP

Proof by Induction

Theorem 1 For all matrices A with dimension M X N:
TRIP(A, M, N)=A"
Induction on number of elements of matrix

Base Case (E=1):
TRIP(A, 1, 1) = square_transpose(4, 1) = A= AT

Induction Hypothesis (EO a.b.f.):

With Ej a.b.f., for all matrices with dimension M x N such that M - N < Ejy:

TRIP(A, M, N)=A"

25

4
JU Correctness of TRIP

Proof by Induction

Induction Step (EO — EO+1):

M=N TRIP(A, M, N) = square_transpose(4, M) = A"
M >N
Matrix is divided in two sub-matrices of dimension p x Nand g x N
with p= %] and ¢= %]

Induction hypothesis applies, merge combines result.

M < N . . :
Matrix is divided in two sub-matrices of dimension M x pand M x ¢

with p=[5]and ¢=[%]
Induction hypothesis applies, split combines result.

26

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Conclusions

JXU .
e CONC lusions

Novel Algorithm TRIP transposes rectangular matrices

e correctly
® in-place
® in highly parallel manner (see next presentation)

28

