JOHANNES KEPLER UNIVERSITY LINZ

A Parallel, In-Place, Rectangular Matrix Transpose Algorithm

JYU JOHANNES KEPLER UNIVERSITY LINZ

 Table of Contents

 Table of Contents}

1. Introduction
2. Description of Transpose Algorithm
3. Proof of Correctness

JOHANNES KEPLER
UNIVERSITY LINZ

Introduction

JㅡU JOHANNES KEPLER UNIVERSITY LINZ
 Rectangular Matrices

Large rectangular matrices are abundant

- Discrete Fourier transforms
- Finite element method
- Raster images in earth observation
- Computer graphics (e.g. radiosity equation)
- etc.

Current Situation in Computing

Moore's Law

- Number of transistors on a chip doubles every two years
- Maximum clock frequencies reached in 2005
- Maximum power density reached
\rightarrow multiple cores on CPUs

Memory

often the limiting factor

- medium-sized problems on mobile / embedded device
- large problem on computer

Example:
100.000×100.000 matrix: 75 GB

Need parallel, in-place algorithms

Rectangular Matrix Transpose

Mathematical Concept vs Implementation

Concept of Transpose

two-dimensional

```
double A[M][N], B[N][M];
for (i=0; i<M; i++)
    for }(j=0; j<<N; j++
        B[j][i] = A [i][j];
```


Implementation on Computer

one-dimensional

$$
\begin{aligned}
& \text { double } A[M \cdot N], B[N \cdot M] \\
& \text { for }(i=0 ; i<M ; i++) \\
& \quad \text { for }(j=0 ; j<N ; j++) \\
& \quad B[j \cdot M+i]=A[i \cdot N+j] ;
\end{aligned}
$$

Rectangular Matrix Transpose

In-Place Transpose

In-Place Transpose of Square Matrix
using one temporary variable
$\mathrm{M} \times(\mathrm{M}-1) / 2$ permutation cycles

In-Place Transpose of Rectangular
 Matrix

one-dimensional
double $A[M \cdot M]$;
for ($i=0 ; i<M ; i++$)

$$
\begin{aligned}
& \text { for }(j=0 ; j<i ; j++) \\
& \quad \operatorname{tmp}=A[j \cdot M+i] ; \\
& A[j \cdot M+i]=A[i \cdot M+j] ; \\
& A[i \cdot M+j]=\operatorname{tmp} ;
\end{aligned}
$$

$$
\pi(x)= \begin{cases}M x \bmod M N-1 & \text { if } x \neq M N-1 \\ M N-1 & \text { if } x=M N-1\end{cases}
$$

π, like every permutation, can be decomposed into disjoint, independent cycles

JOHANNES KEPLER
UNIVERSITY LINZ

Rectangular Matrix Transpose

Parallel In-Place Transpose

Common Approach

Independence of Permutation Cycles

- Limited Parallelism
- Problem-dependent parallelism
- Permutation cycles are inherently serial

Our Approach

Divide and conquer

Transpose of Rectangular matrices, In-place and in Parallel (TRIP)

- Highly parallel for all problem-sizes (see presentation 2)
- In-place
- Recursive

JOHANNES KEPLER UNIVERSITY LINZ

Description of Transpose Algorithm

TRIP Algorithm

If matrix is rectangular TRIP transposes sub-matrices, then combines the result with merge or split
$\operatorname{TRIP}(A, m, n)= \begin{cases}\operatorname{TRIP}\left(A\left(0:\left\lfloor\frac{m}{2}\right\rfloor, 0: n\right),\left\lfloor\frac{m}{2}\right\rfloor, n\right) \| & \\ \operatorname{TRIP}\left(A\left(\left\lfloor\frac{m}{2}\right\rfloor: m, 0: n\right),\left\lceil\frac{m}{2}\right\rceil, n\right) ; & \text { if } m>n \\ \operatorname{merge}\left(\bar{A},\left\lfloor\frac{m}{2}\right\rfloor,\left\lceil\frac{m}{2}\right\rceil, n\right) & \\ \operatorname{TRIP}\left(A\left(0: m, 0:\left\lfloor\frac{n}{2}\right\rfloor\right), m,\left\lfloor\frac{n}{2}\right\rfloor\right) \| & \\ \operatorname{TRIP}\left(A\left(0: m,\left\lfloor\frac{n}{2}\right\rfloor: n\right), m,\left\lceil\frac{n}{2}\right\rceil\right) ; & \text { if } m<n \\ \operatorname{split}\left(\bar{A},\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil, m\right) & \text { if } m=n \\ \operatorname{square} \text { _transpose }(A, n) & \end{cases}$ UNIVERSITY LINZ

TRIP Example

Transpose of a Tall Matrix
original matrix is tall \rightarrow it is divided by TRIP and the sub-matrices are in-place transposed

J뜨 JOHANNES KEPLER
UNIVERSITY LINZ UNIVERSITY LINZ

TRIP Example

Transpose of a Tall Matrix

the transposed sub-matrices are combined by merge

1	4	2	5	3	6	7	10	13	8	11	14	9	12	15

merge(2, 3, 3)

1	4
2	5
$\operatorname{rol}(2 * 2)$	3 6\quad7 10 13\quad9 11 14\quad\begin{tabular}{\|l
\hline
\end{tabular} |

J뜨 JOHANNES KEPLER
UNIVERSITY LINZ UNIVERSITY LINZ

TRIP Example
the merged result can be reinterpreted
Transpose of a Tall Matrix

1	4	2	5	3	6	7	10	13	8	11	14	9	12	15

merge(2, 3, 3)

1	4	2	5		3	6		7	10	13	8	11	14	9	12	15
$\operatorname{rol}(2 * 2)$																
1	4	7	10	13		2	5		3	6	8	11	14	9	12	15

merge($2,3,1$)

1	4	7	10	13

base case

| 1 | 4 |
| :--- | :--- |\quad| 7 | 10 | 13 |
| :--- | :--- | :--- |

| 1 | 4 |
| :--- | :--- | :--- | :--- | :--- |\quad| 7 | 10 |
| :--- | :--- | 13.

merge(2, 3, 1)
base case

2	5	8	11	14

merge $(2,3,1)$

base case

| 1 | 4 |
| :--- | :--- | :--- | :--- |\quad| 7 | 10 | 13 |
| :--- | :--- | :--- |

| 2 | 5 |
| :--- | :--- |\quad| 8 | 11 | 14 |
| :---: | :---: | :---: |

| 3 | 6 |
| :--- | :--- |\quad| 9 | 12 | 15 |
| :--- | :--- | :--- |

merge Algorithm

merge combines the transposes of sub-matrices of tall matrices
merge first rotates the middle part of the array, then recursively merges the left and right parts of the array

$$
\operatorname{merge}(\bar{A}, p, q, n)= \begin{cases}\operatorname{rol}\left(\bar{A}\left(\left\lfloor\frac{n}{2}\right\rfloor p: n p+\left\lfloor\frac{n}{2}\right\rfloor q\right),\left\lceil\frac{n}{2}\right\rceil p\right) ; & \\ \operatorname{merge}\left(\bar{A}\left(0:\left\lfloor\frac{n}{2}\right\rfloor(p+q)\right), p, q,\left\lfloor\frac{n}{2}\right\rfloor\right) \| & \text { if } n>1 \\ \operatorname{merge}\left(\bar{A}\left(\left\lfloor\frac{n}{2}\right\rfloor(p+q): n(p+q)\right), p, q,\left\lceil\frac{n}{2}\right\rceil\right) & \\ \bar{A} & \text { if } n=1\end{cases}
$$

rol(arr, k) ... left rotation (circular shift) of array arr by \boldsymbol{k} elements

split Algorithm

split combines the transposes of sub-matrices of wide matrices
split first recursively splits the left and right parts of the array, then rotates the middle part of the array

$$
\operatorname{split}(\bar{A}, p, q, m)= \begin{cases}\operatorname{split}\left(\bar{A}\left(0:\left\lfloor\frac{m}{2}\right\rfloor(p+q)\right), p, q,\left\lfloor\frac{m}{2}\right\rfloor\right) \| & \\ \operatorname{split}\left(\bar{A}\left(\left\lfloor\frac{m}{2}\right\rfloor(p+q): m(p+q), p, q,\left\lceil\frac{m}{2}\right\rceil\right) ;\right. & \text { if } m>1 \\ \operatorname{rol}\left(\bar{A}\left(\left\lfloor\frac{m}{2}\right\rfloor p: m p+\left\lfloor\frac{m}{2}\right\rfloor q\right),\left\lfloor\frac{m}{2}\right\rfloor q\right) & \\ \bar{A} & \text { if } m=1\end{cases}
$$

JOHANNES KEPLER
UNIVERSITY LINZ

Correctness Proof

JYU
 JOHANNES KEPLER UNIVERSITY LINZ
 Correctness of merge

Structure of Matrix and Transpose

Matrix is split into two parts \rightarrow transpose of Matrix is split into two parts

Correctness of merge

Structure of Matrix after In-Place Transposition of Sub-Matrices

In-place transposition of sub-matrices results in reshaped transposes of sub-matrices

$$
\overline{T_{p}}=\overline{A_{p}^{\top}} \quad \text { and } \quad \overline{T_{q}}=\overline{A_{q}^{\top}}
$$

Correctness of merge

Proof Sketch

Prove by induction: merge transforms T into the transpose of A

$$
\bar{T}=\prod_{0 \leq i<N}\left(\overline{A_{p}^{\top}}\right)_{i} \cdot \prod_{0 \leq i<N}\left(\overline{A_{q}^{\top}}\right)_{i} \quad \overline{A^{\top}}=\prod_{0 \leq i<N}\left(\left(\overline{A_{p}^{\top}}\right)_{i} \cdot\left(\overline{A_{q}^{\top}}\right)_{i}\right)
$$

Correctness of merge

Lemma (merge)

Lemma 1 Let A be a matrix of dimension $M \times N$.
Then

$$
\operatorname{merge}(\bar{T}, p, q, N)=\overline{A^{\top}}
$$

if T is composed of the reshaped transposes of A_{p} and A_{q} as described above, for $p, q>0$ with $p+q=M$.

Correctness of merge

$$
\text { Proof of Lemma (merge) } \bar{T}=\prod_{0 \leq i<N}\left(\overline{A_{p}^{\top}}\right)_{i} \cdot \prod_{0 \leq i<N}\left(\overline{A_{q}^{\top}}\right)_{i} \longrightarrow \quad \overline{A^{\top}}=\prod_{0 \leq i<N}\left(\left(\overline{A_{p}^{\top}}\right)_{i} \cdot\left(\overline{A_{q}^{\top}}\right)_{i}\right)
$$

Base Case ($k=1$)

$$
\bar{T}=\left(\overline{A_{p}^{\top}}\right)_{0} \cdot\left(\overline{A_{q}^{\top}}\right)_{0}=\overline{A_{p}^{\top}} \cdot \overline{A_{q}^{\top}}=\prod_{0 \leq i<k}\left(\left(\overline{A_{p}^{\top}}\right)_{i} \cdot\left(\overline{A_{q}^{\top}}\right)_{i}\right)=\overline{A^{\top}}
$$

Induction Hypothesis (k0 a.b.f)

merge transforms the array \bar{T} from the shape

$$
\bar{T}=\prod_{0 \leq i<k_{0}}\left(\overline{A_{p}^{\top}}\right)_{i} \cdot \prod_{0 \leq i<k_{0}}\left(\overline{A_{q}^{\top}}\right)_{i}
$$

to the shape

$$
\prod_{0 \leq i<k_{0}}\left(\left(\overline{A_{p}^{\top}}\right)_{i} \cdot\left(\overline{A_{q}^{\top}}\right)_{i}\right)=\overline{A^{\top}}
$$

Correctness of merge

Proof of Lemma (merge) $\bar{T}=\prod_{0 \leq i<N}\left(\overline{A_{p}^{\top}}\right)_{i} \cdot \prod_{0 \leq i<N}\left(\overline{A_{q}^{\top}}\right)_{i} \longrightarrow \quad \overline{A^{\top}}=\prod_{0 \leq i<N}\left(\left(\overline{A_{p}^{\top}}\right)_{i} \cdot\left(\overline{A_{q}^{\top}}\right)_{i}\right)$

Induction Step (k0 \rightarrow k0+1)

$$
\bar{T}=\prod_{0 \leq i<k_{0}+1}\left(\overline{A_{p}^{\top}}\right)_{i} \cdot \prod_{0 \leq i<k_{0}+1}\left(\overline{A_{q}^{\top}}\right)_{i}
$$

merge matches recursive case

$$
\begin{aligned}
& \operatorname{rol}\left(\bar{A}\left(\left\lfloor\frac{k_{0}+1}{2}\right\rfloor p: n p+\left\lfloor\frac{k_{0}+1}{2}\right\rfloor q\right),\left\lceil\frac{k_{0}+1}{2}\right\rceil p\right) ; \\
& \operatorname{merge}\left(\bar{A}\left(0:\left\lfloor\frac{k_{0}+1}{2}\right\rfloor(p+q)\right), p, q,\left\lfloor\frac{k_{0}+1}{2}\right\rfloor\right) \| \\
& \operatorname{merge}\left(\bar{A}\left(\left\lfloor\frac{k_{0}+1}{2}\right\rfloor(p+q): k_{0}+1(p+q)\right), p, q,\left\lceil\frac{k_{0}+1}{2}\right\rceil\right)
\end{aligned}
$$

rol transforms T to

$$
\bar{T}=\prod_{0 \leq i<\left\lfloor\frac{k_{0}+1}{2}\right\rfloor}\left(\overline{A_{p}^{\top}}\right)_{i} \cdot \prod_{0 \leq i<\left\lfloor\frac{k_{0}+1}{2}\right\rfloor}\left(\overline{A_{q}^{\top}}\right)_{i} \cdot \prod_{\left\lfloor\frac{k_{0}+1}{2}\right\rfloor \leq i<k_{0}+1}\left(\overline{A_{p}^{\top}}\right)_{i} \prod_{\left\lfloor\frac{k_{0}+1}{2}\right\rfloor \leq i<k_{0}+1}\left(\overline{A_{q}^{\top}}\right)_{i}
$$

Correctness of merge

$$
\text { Proof of Lemma (merge) } \bar{T}=\prod_{0 \leq i<N}\left(\overline{A_{p}^{\top}}\right)_{i} \cdot \prod_{0 \leq i<N}\left(\overline{A_{q}^{\top}}\right)_{i} \longrightarrow \quad \overline{A^{\top}}=\prod_{0 \leq i<N}\left(\left(\overline{A_{p}^{\top}}\right)_{i} \cdot\left(\overline{A_{q}^{\top}}\right)_{i}\right)
$$

finally: recursive merge calls on sub-arrays

$$
\begin{aligned}
\bar{T}= & \prod_{0 \leq i<\left\lfloor\frac{k_{0}+1}{2}\right\rfloor}\left(\overline{A_{p}^{\top}}\right)_{i} \cdot \prod_{0 \leq i<\left\lfloor\frac{k_{0}+1}{2}\right\rfloor}\left(\overline{A_{q}^{\top}}\right)_{i} \cdot \prod_{\substack{\left\lfloor\frac{k_{0}+1}{2}\right\rfloor \leq i<k_{0}+1}}\left(\overline{A_{p}^{\top}}\right)_{i} \prod_{\left\lfloor\frac{k_{0}+1}{2}\right\rfloor \leq i<k_{0}+1}\left(\overline{A_{q}^{\top}}\right)_{i} \\
\bar{T} & =\prod_{0 \leq i<\left\lfloor\frac{k_{0}+1}{2}\right\rfloor}\left(\left(\overline{A_{p}^{\top}}\right)_{i} \cdot\left(\overline{A_{q}^{\top}}\right)_{i}\right)^{\downarrow} \cdot \prod_{\left\lfloor\frac{k_{0}+1}{2}\right\rfloor \leq i<k_{0}+1}\left(\left(\overline{A_{p}^{\top}}\right)_{i} \cdot\left(\overline{A_{q}^{\top}}\right)_{i}\right) \\
& =\prod_{0 \leq i<k_{0}+1}\left(\left(\overline{A_{p}^{\top}}\right)_{i} \cdot\left(\overline{A_{q}^{\top}}\right)_{i}\right)=\overline{A^{\top}}
\end{aligned}
$$ UNIVERSITY LINZ

Correctness of split

analogous, by induction

$$
\begin{array}{r}
A=(\underbrace{A_{p}}_{p} \underbrace{A_{q}}_{q})\} M \\
T=(\underbrace{T_{p}}_{p}
\end{array}
$$

$$
\underbrace{A^{\top}=(\underbrace{T_{q}}_{M}}_{q} \begin{array}{c}
A_{p}^{\top} \\
A_{q}^{\top}
\end{array})\} q{ }^{(})
$$

Correctness of TRIP

Proof by Induction

Theorem 1 For all matrices A with dimension $M \times N$:

$$
\operatorname{TRIP}(A, M, N)=A^{\top}
$$

Induction on number of elements of matrix

Base Case ($\mathrm{E}=1$):

$$
\operatorname{TRIP}(A, 1,1)=\operatorname{square} \text { _transpose }(A, 1)=A=A^{\top}
$$

Induction Hypothesis (EO a.b.f.):
With E_{0} a.b.f., for all matrices with dimension $M \times N$ such that $M \cdot N \leq E_{0}$:

$$
\operatorname{TRIP}(A, M, N)=A^{\top}
$$

Correctness of TRIP

Proof by Induction

Induction Step (E0 \rightarrow EO+1):
$M=N \quad \operatorname{TRIP}(A, M, N)=$ square_transpose $(A, M)=A^{\top}$
$M>N$
Matrix is divided in two sub-matrices of dimension $p \times N$ and $q \times N$
with $p=\left\lfloor\frac{M}{2}\right\rfloor$ and $q=\left\lceil\frac{M}{2}\right\rceil$
Induction hypothesis applies, merge combines result.
$M<N$
Matrix is divided in two sub-matrices of dimension $M \times p$ and $M \times q$
with $p=\left\lfloor\frac{N}{2}\right\rfloor$ and $q=\left\lceil\frac{N}{2}\right\rceil$
Induction hypothesis applies, split combines result.

JOHANNES KEPLER
UNIVERSITY LINZ

Conclusions

JYU JOHANNES KEPLER UNIVERSITY LINZ
 Conclusions

Novel Algorithm TRIP transposes rectangular matrices

- correctly
- in-place
- in highly parallel manner (see next presentation)

