

Stefan Amberger

ICA & RISC amberger.stefan@gmail.com

A Parallel, In-Place, Rectangular Matrix Transpose Algorithm

Description of Algorithm and Correctness Proof

- 1. Introduction
- 2. Description of Transpose Algorithm
- 3. Proof of Correctness

Introduction

Large rectangular matrices are abundant

- Discrete Fourier transforms
- Finite element method
- Raster images in earth observation
- Computer graphics (e.g. radiosity equation)
- etc.

JYU JOHANNES KEPLER UNIVERSITY LINZ CUrrent Situation in Computing

Moore's Law

- Number of transistors on a chip doubles every two years
- Maximum clock frequencies reached in 2005
- Maximum power density reached

 \rightarrow multiple cores on CPUs

Memory

often the limiting factor

- medium-sized problems on mobile / embedded device
- large problem on computer

Example: 100.000 x 100.000 matrix: 75 GB

Need parallel, in-place algorithms

Mathematical Concept vs Implementation

Concept of Transpose

two-dimensional

Implementation on Computer

one-dimensional

JYU OHANNES KEPLER Rectangular Matrix Transpose

In-Place Transpose

In-Place Transpose of Square Matrix

using one temporary variable M x (M-1)/2 permutation cycles

In-Place Transpose of Rectangular Matrix

one-dimensional

 π

$$(x) = \begin{cases} Mx \mod MN - 1 & \text{if } x \neq MN - 1 \\ MN - 1 & \text{if } x = MN - 1 \end{cases}$$

 π , like every permutation, can be decomposed into disjoint, independent cycles

JYU JOHANNES KEPLER UNIVERSITY LINZ Rectangular Matrix Transpose

Parallel In-Place Transpose

Common Approach

Independence of Permutation Cycles

- Limited Parallelism
- Problem-dependent parallelism
- Permutation cycles are inherently serial

Our Approach

Divide and conquer

Transpose of Rectangular matrices, In-place and in Parallel (TRIP)

- Highly parallel for all problem-sizes (see presentation 2)
- In-place
- Recursive

Description of Transpose Algorithm

If matrix is rectangular **TRIP** transposes sub-matrices, then combines the result with **merge** or **split**

$$\operatorname{TRIP}(A, m, n) = \begin{cases} \operatorname{TRIP}(A(0:\lfloor \frac{m}{2} \rfloor, 0:n), \lfloor \frac{m}{2} \rfloor, n) \parallel \\ \operatorname{TRIP}(A(\lfloor \frac{m}{2} \rfloor:m, 0:n), \lceil \frac{m}{2} \rceil, n); & \text{if } m > n \\ \operatorname{merge}(\overline{A}, \lfloor \frac{m}{2} \rfloor, \lceil \frac{m}{2} \rceil, n) \\ \\ \operatorname{TRIP}(A(0:m, 0:\lfloor \frac{n}{2} \rfloor), m, \lfloor \frac{n}{2} \rfloor) \parallel \\ \operatorname{TRIP}(A(0:m, \lfloor \frac{n}{2} \rfloor:n), m, \lceil \frac{n}{2} \rceil); & \text{if } m < n \\ \operatorname{split}(\overline{A}, \lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil, m) \\ \\ \operatorname{square_transpose}(A, n) & \text{if } m = n \end{cases}$$

Transpose of a Tall Matrix

original matrix is tall \rightarrow it is divided by **TRIP** and the sub-matrices are in-place transposed

the transposed sub-matrices are

Transpose of a Tall Matrix

combined by *merge*

the merged result can be reinterpreted as the transpose of the original matrix

Transpose of a Tall Matrix

merge combines the transposes of sub-matrices of *tall* matrices

merge first rotates the middle part of the array, then recursively merges the left and right parts of the array

$$\operatorname{merge}(\overline{A}, p, q, n) = \begin{cases} \operatorname{rol}(\overline{A}(\lfloor \frac{n}{2} \rfloor p : np + \lfloor \frac{n}{2} \rfloor q), \lceil \frac{n}{2} \rceil p); \\ \operatorname{merge}(\overline{A}(0 : \lfloor \frac{n}{2} \rfloor (p+q)), p, q, \lfloor \frac{n}{2} \rfloor) \parallel & \text{if } n > 1 \\ \operatorname{merge}(\overline{A}(\lfloor \frac{n}{2} \rfloor (p+q) : n(p+q)), p, q, \lceil \frac{n}{2} \rceil) & \\ \overline{A} & \text{if } n = 1 \end{cases}$$

rol(arr, k) ... left rotation (circular shift) of array arr by k elements

split combines the transposes of sub-matrices of *wide* matrices

split first recursively splits the left and right parts of the array, then rotates the middle part of the array

$$\operatorname{split}(\overline{A}, p, q, m) = \begin{cases} \operatorname{split}(\overline{A}(0:\lfloor \frac{m}{2} \rfloor (p+q)), p, q, \lfloor \frac{m}{2} \rfloor) \parallel \\ \operatorname{split}(\overline{A}(\lfloor \frac{m}{2} \rfloor (p+q):m(p+q)), p, q, \lceil \frac{m}{2} \rceil); & \text{if } m > 1 \\ \operatorname{rol}(\overline{A}(\lfloor \frac{m}{2} \rfloor p:mp+\lfloor \frac{m}{2} \rfloor q), \lfloor \frac{m}{2} \rfloor q) \\ \overline{A} & \text{if } m = 1 \end{cases}$$

split and merge are inverse to each other

Correctness Proof

Structure of Matrix and Transpose

Matrix is split into two parts \rightarrow transpose of Matrix is split into two parts

Structure of Matrix after In-Place Transposition of Sub-Matrices

In-place transposition of sub-matrices results in *reshaped transposes* of sub-matrices

 $\overline{T_p} = \overline{A_p^{ op}} \quad ext{and} \quad \overline{T_q} = \overline{A_q^{ op}}$

Proof Sketch

Prove by induction: merge transforms T into the transpose of A

Lemma (merge)

Lemma 1 Let A be a matrix of dimension $M \times N$. Then

$$\mathit{merge}(\overline{T},\ p,\ q,\ N) = \overline{A^{\top}}$$

if T is composed of the reshaped transposes of A_p and A_q as described above, for p, q > 0 with p + q = M.

$$\mathbf{Proof of Lemma}(\mathbf{merge}) \qquad \overline{T} = \prod_{0 \le i < N} \left(\overline{A_p^{\top}}\right)_i \cdot \prod_{0 \le i < N} \left(\overline{A_q^{\top}}\right)_i \stackrel{!}{\longrightarrow} \overline{A^{\top}} = \prod_{0 \le i < N} \left(\left(\overline{A_p^{\top}}\right)_i \cdot \left(\overline{A_q^{\top}}\right)_i\right)$$

Base Case (k=1)

$$\overline{T} = \left(\overline{A_p^{\top}}\right)_0 \cdot \left(\overline{A_q^{\top}}\right)_0 = \overline{A_p^{\top}} \cdot \overline{A_q^{\top}} = \prod_{0 \le i < k} \ \left(\left(\overline{A_p^{\top}}\right)_i \cdot \left(\overline{A_q^{\top}}\right)_i\right) = \overline{A^{\top}}$$

Induction Hypothesis (k0 a.b.f)

merge transforms the array \overline{T} from the shape

$$\overline{T} = \prod_{0 \leq i < k_0} \ \left(\overline{A_p^{\top}} \right)_i \cdot \prod_{0 \leq i < k_0} \ \left(\overline{A_q^{\top}} \right)_i$$

to the shape

$$\prod_{0 \leq i < k_0} \ \left(\left(\overline{A_p^\top} \right)_i \cdot \left(\overline{A_q^\top} \right)_i \right) = \overline{A^\top}$$

 $\textbf{Proof of Lemma (merge)} \qquad \overline{T} = \prod_{0 \le i < N} \left(\overline{A_p^{\top}} \right)_i \cdot \prod_{0 \le i < N} \left(\overline{A_q^{\top}} \right)_i \underbrace{!}_{i} \overline{A^{\top}} = \prod_{0 \le i < N} \left(\left(\overline{A_p^{\top}} \right)_i \cdot \left(\overline{A_q^{\top}} \right)_i \right)$

Induction Step (k0 \rightarrow k0+1)

$$\overline{T} = \prod_{0 \le i < k_0 + 1} \left(\overline{A_p^{\top}} \right)_i \cdot \prod_{0 \le i < k_0 + 1} \left(\overline{A_q^{\top}} \right)_i$$

merge matches recursive case

$$\operatorname{rol}(\overline{A}(\lfloor \frac{k_0+1}{2} \rfloor p: np + \lfloor \frac{k_0+1}{2} \rfloor q), \lceil \frac{k_0+1}{2} \rceil p); \\ \operatorname{merge}(\overline{A}(0: \lfloor \frac{k_0+1}{2} \rfloor (p+q)), p, q, \lfloor \frac{k_0+1}{2} \rfloor) \parallel \\ \operatorname{merge}(\overline{A}(\lfloor \frac{k_0+1}{2} \rfloor (p+q): k_0 + 1(p+q)), p, q, \lceil \frac{k_0+1}{2} \rceil)$$

rol transforms T to

$$\overline{T} = \prod_{0 \le i < \lfloor \frac{k_0 + 1}{2} \rfloor} \left(\overline{A_p^{\top}} \right)_i \cdot \prod_{0 \le i < \lfloor \frac{k_0 + 1}{2} \rfloor} \left(\overline{A_q^{\top}} \right)_i \cdot \prod_{\lfloor \frac{k_0 + 1}{2} \rfloor \le i < k_0 + 1} \left(\overline{A_p^{\top}} \right)_i \cdot \prod_{\lfloor \frac{k_0 + 1}{2} \rfloor \le i < k_0 + 1} \left(\overline{A_q^{\top}} \right)_i$$

 $\textbf{Proof of Lemma (merge)} \qquad \overline{T} = \prod_{0 \le i < N} \left(\overline{A_p^{\top}} \right)_i \cdot \prod_{0 \le i < N} \left(\overline{A_q^{\top}} \right)_i \underbrace{!}_{i} \overline{A^{\top}} = \prod_{0 \le i < N} \left(\left(\overline{A_p^{\top}} \right)_i \cdot \left(\overline{A_q^{\top}} \right)_i \right)$

finally: recursive merge calls on sub-arrays

 $\overline{T} = \prod_{0 \le i < \lfloor \frac{k_0 + 1}{2} \rfloor} \left(\left(\overline{A_p^{\top}} \right)_i \cdot \left(\overline{A_q^{\top}} \right)_i \right)^{\cdot} \cdot \prod_{\lfloor \frac{k_0 + 1}{2} \rfloor \le i < k_0 + 1} \left(\left(\overline{A_p^{\top}} \right)_i \cdot \left(\overline{A_q^{\top}} \right)_i \right)$ $= \prod \left(\left(\overline{A_p^{\top}} \right)_i \cdot \left(\overline{A_q^{\top}} \right)_i \right) = \overline{A^{\top}}$ $0 \le i \le k_0 + 1$

analogous, by induction

Proof by Induction

Theorem 1 For all matrices A with dimension $M \times N$:

 $TRIP(A, M, N) = A^{\top}$

Induction on number of elements of matrix

```
Base Case (E=1):

\operatorname{TRIP}(A, 1, 1) = \operatorname{square\_transpose}(A, 1) = A = A^{\top}
```

Induction Hypothesis (E0 a.b.f.):

With E_0 a.b.f., for all matrices with dimension $M \times N$ such that $M \cdot N \leq E_0$:

 $\mathrm{TRIP}(A,\ M,\ N) = A^\top$

Proof by Induction

Induction Step (E0 \rightarrow E0+1):

$$M = N$$
 TRIP $(A, M, N) = \text{square}_{\text{transpose}}(A, M) = A^{\top}$

- $\begin{array}{l} M>N\\ \mbox{Matrix is divided in two sub-matrices of dimension } p\times N \mbox{ and } q\times N\\ \mbox{with } p=\lfloor \frac{M}{2} \rfloor \mbox{ and } q=\lceil \frac{M}{2} \rceil\\ \mbox{Induction hypothesis applies, merge combines result.} \end{array}$
- $\begin{aligned} M < N \\ \text{Matrix is divided in two sub-matrices of dimension } M \times p \text{ and } M \times q \\ \text{with } p = \lfloor \frac{N}{2} \rfloor \text{ and } q = \lceil \frac{N}{2} \rceil \\ \text{Induction hypothesis applies, split combines result.} \end{aligned}$

Conclusions

Novel Algorithm **TRIP** transposes rectangular matrices

- correctly
- in-place
- in highly parallel manner (see next presentation)