
Gruppe Hemmecke (10:15) Hemmecke (11:00) Popov

Name Matrikel SKZ

Klausur 2

Berechenbarkeit und Komplexität
15-Januar-2016

Part 1 RecFun2015
Let f1 and f2 be two µ-recursive functions that are not primitive recursive. And
let g be a primitive recursive function. All function are to be understood as
mappings N→P N.

1 yes Is it possible that the composition f1 ◦ f2 is primitive recursive?

If f1 is a function that is unde�ned on the input 0 and returns 1 for
every other input and f2 is a total function that is not primitive
recursive such that f2(n) > 0, e.g. f2(n) = 1 + ack(n, n). Then
(f1 ◦ f2)(n) = 1 and this function is surely primitive recursive.

2 yes Is g µ-recursive?

Every primitive recursive function is µ-recursive.

3 yes Let f : N→P N be a partial function that is unde�ned for every input. Is
f a µ-recursive function?

Let g : N2 → N be any primitive recursive function and let
h(x, y) = s(g(x, y)). Then f(y) := (µh)(y) is clearly a µ-recursive
function with that is nowhere de�ned.

4 yes Is there a Turing machine that (on input n) returns f1(n) if g(n) is odd
and returns f2(n) if g(n) is even?

5 no Can every µ-recursive function be computed by a LOOP program?

Part 2 Grammar2015
Consider the grammar G = (N,Σ, P, S) where N = {S}, Σ = {a, b}, P =
{S → aSB, S → bB,B → b}.

6 yes Is aabbbb ∈ L(G)?

7 no Can L(G) be generated by a nondeterministic �nite state machine?

L(G) =
{
anbn+2

∣∣n ∈ N \ {0}
}
. Pumping Lemma.

8 yes Does for every right-linear grammar R with terminal symbols Σ = {0, 1}
exist a Turing machine M such that L(R) = L(M).

By Theorem 22 (lecture notes) is the language of a right linear
grammar a regular language.

9 no Does there exist a recursively enumerable language that can not be gener-
ated by a grammar?

Part 3 LoopWhile2015

Let a function f : N2 → {0, 1, 2} be de�ned by

f(a, b) :=


0 if a = b,

1 if a < b,

2 if a > b.



10 yes Is f a LOOP computable function?

11 yes Let f ′ be de�ned like f , but with the exception that f ′ is unde�ned if the
�rst or the second argument is equal to 2016. Is f ′ a WHILE computable
function?

12 yes Is (µf) computable by a Turing machine?

13 yes Let P be a WHILE program that computes a (partial) function g : N2 →P

N. Is g a µ-recursive function?

Part 4 Complexity2015

Let f(n) = n log2(n), g(n) = n2n, h(n) = log2(n)2n.

14 no Is it true that f(n) + g(n) = O(f(n))?

15 no Is it true that 2f(n) = O(h(n))?

16 no Is it true that h(n)2 = O(g(n))?

17 yes Is it true that f(n)g(n) = O(h(n)2)?

18 yes Is it true that n4+n+1
n2+1 = O(n2 log2(n))?

Part 5 Decidable2015
Consider the following problems. In each problem below, the input of the problem
is the code 〈M〉 of a Turing machine M with input alphabet {0, 1}.
Problem F: Does L(M) contain exactly 2016 words?
Problem W: Does L(M) contain at least 2016 words?
Problem H: Does M halt after at most 2016 steps?

19 no Is F decidable?

Rice theorem

20 yes Is W semi-decidable?

Generate all words from {0, 1}∗. Simulate M on each word. One has to
start a separate simulation for each word and run them all in parallel.
If at least 2016 of these simulations stop with acceping the respective
input word then the answer to the problem is YES.

21 yes Is H decidable?

We only have to investigate 2016 steps of M . Thus, M can at least
have touched 2016 cells on the tape. So we simulate (at most) 2016
steps of M on each possible word of length 2016. If M stops in each of
these �nitely many cases then the answer to the problem is YES,
otherwise it is NO. So the problem is decidable.

22 no Suppose a problem P ⊆ {0, 1}∗ is decidable. Is then also every subproblem
U ⊆ P decidable?

Counter example. Let P = {0, 1}∗. This is surely decidable, since it is
a recursive language. There are, however subsets of {0, 1}∗ that are not
recursive languages and thus also not decidable.

23 yes Let P, P ′ ⊆ {0, 1}∗ and let M be a Turing machine that for every w ∈ P
computes a w′ ∈ P ′ and for every w 6∈ P computes a word w′ 6∈ P ′.
Assume P ′ is decidable. Can it be concluded that P is semi-decidable.

By Theorem 32 (lecture notes) we can even conclude that P is
decidable. Note that the �computable function� that is required in
De�nition 42 is the function computed by M .



Part 6 OpenComputability2015

Let T (n) be the number of multiplications executed during the run of the follow-
ing program while evaluating g(n, 1).

function g(n, x) {

if n==0

return x

else

k = floor(n/3) //floor(x) = biggest integer less than or equal to x

return g(k, x) * g(k, x+1)

24 1 Point Compute T (9).
T (9) =

g(9, 1) = g(3, 1) ∗ g(3, 2) = g(1, 1) ∗ g(1, 2) ∗ g(1, 2) ∗ g(1, 3) =
g(0, 1) ∗ g(0, 2) ∗ g(0, 2) ∗ g(0, 3) ∗ g(0, 2) ∗ g(0, 3) ∗ g(0, 3) ∗ g(0, 4) =
1 ∗ 2 ∗ 2 ∗ 3 ∗ 2 ∗ 3 ∗ 3 ∗ 4. So T (9) = 7.

25 1 Point Determine T (n) asymptotically for large n. Use Θ-notation.
T (n) =

A recursion formula for T is T (n) = 1 + 2T (bn3 c). By the Master
Theorem we get T (n) = Θ(nlog3 2) = O(2log3 n)


