Problems Solved:

41	42	43	44	45

Name:

Matrikel-Nr.:

Problem 41. Let M be a Turing machine over the alphabet $\{0,1\}$ that takes as input a string $b_{1} b_{2} \ldots b_{n}\left(b_{i} \in\{0,1\}\right)$, prepends an additional 1 to the string and then interprets the result $1 b_{1} b_{2} \ldots b_{n}$ as the binary representation of a number $k . M$ then writes out the unary representation of k (consisting of a string of k letters 1) onto the tape and stops.
Note that in the above description it is not said how M computes the result. In particular M need not be the most efficient Turing machine fulfilling the above specification.

1. Give a reasonably close asymptotic lower-bound for the space- and timecomplexity $S(n)$ and $T(n)$ for the execution of the task and justify these bounds (without giving a detailed construction of M). Choose adequate Landau-symbols for formulating the bounds.
2. Give an informal description of a (reasonably efficient) Turing machine M^{\prime} that performs the task described above. Analyze the space-complexity $S(n)$ and $T(n)$ and write down an upper/exact asymptotic bound for these complexities. Again choose adequate Landau symbols for formulating the bounds.

Problem 42. Prove or disprove the following:

$$
O(f(n)) \cdot O(g(n))=O(f(n) \cdot g(n))
$$

Hint: Transform the equation as described in Definition 46 and formally prove the resulting formula.

Problem 43. Let X be a monoid. Device an "algorithm" (as recursive/iterative pseudo-code in the style of Chapter 6 of the lecture notes) for the computation of x^{n} for $x \in X, n \in \mathbb{N}$ that uses less multiplications than the naive algorithm of n times multiplying x to the result obtained so far. Determine the complexity as $M(n)$, i.e., the number of multiplications of your "algorithm" depending on the exponent n.
Hint: Note that x^{8} can be computed with just 3 multiplications while the naive algorithm would use 8 multiplications.

Problem 44. Let $T(n)$ be number of times that line 2 is executed in the worst case while running $P(a, b)$ where $n:=b-a$.

```
procedure P(int a, int b, int foo[])
    if (a + 1 < b) {
        int h = floor( (a + b) / 2 );
        if foo[h] >= 0 then P(a, h)
        if foo[h] <= 0 then P(h, b)
    }
end procedure
```

1. Compute $T(1), T(2), T(3)$ and $T(4)$.
2. Give a recurrence relation for $T(n)$.
3. Solve your recurrence relation for $T(n)$ in the special case where $n=2^{m}$ is a power of two.
4. Use the Master Theorem to determine asymptotic bounds for $T(n)$.

Note that floor denotes the function that returns the biggest integer value that is smaller than or equal to the argument.

Problem 45. Let $T(n)$ be the total number of times that the instruction $a[i, j]=a[i, j]+1$ is executed during the execution of $P(n, 0,0)$.
procedure $\mathrm{P}(\mathrm{n}, \mathrm{x}, \mathrm{y})$
if $n>=1$ then for ($\mathrm{i}=\mathrm{x}$; $\mathrm{i}<\mathrm{x}+\mathrm{n}$; $\mathrm{i}++$) for ($\mathrm{j}=\mathrm{y}$; j < $\mathrm{y}+\mathrm{n}$; $\mathrm{j}++$) $a[i, j]=a[i, j]+1$
h = floor (n / 2)
$P(h, x, y)$
$P(h, x+h, y)$ $P(h, x, y+h)$ $P(h, x+h, y+h)$
end if
end procedure

1. Compute $T(1), T(2)$ and $T(4)$.
2. Give a recurrence relation for $T(n)$.
3. Solve your recurrence relation for $T(n)$ in the special case where $n=2^{m}$ is a power of two.
4. Use the Master Theorem to determine asymptotic bounds for $T(n)$.
