Gruppe	Hemmecke (10:15)	Hemmecke (11:00)				Popov			
Name		Matrikel					SKZ		

Klausur 1 Berechenbarkeit und Komplexität 20. November 2015

Part 1 NFSM2015

Let N be the nondeterministic finite state machine

 $(\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \nu, \{q_0\}, \{q_0, q_2\}),\$

whose transition function ν is given below.

1 no	Is $1101100100100 \in L(N)$?
	A word $w \in L(N)$ with $ w > 1$ never ends with 00.
2 no 3 yes	Is $L(N)$ finite? Let N' be the NFSM that is constructed from N by solely reversing the arrow $q_2 \rightarrow q_0$ (the one with the letter 1) in the diagram above. Is $L(N')$ finite?
	$L(N') = \{\epsilon, 0, 1, 110\}.$
4 yes	Does there exist a regular expression r such that $L(r) = \overline{L(N)} = \{0,1\}^* \setminus L(N)$?
	L(N) is regular and so is its complement.
5 yes	Let R be a regular language and define $L = \{ 01^n w n \in \mathbb{N}, w \in R \}$. Is L a regular language?
6 yes 7 yes	Is there an enumerator Turing machine G such that $Gen(G) = L(N)$? Is there a deterministic finite state machine M with less than 24 states such that $L(M) = L(N)$?
	According to the subset construction, there must be a DFSM with at most $2^4 = 16$ states.
8 yes	Is $L(N)^*$ recursively enumerable?
	$L(N)$ is regular. Hence, $L(N)^*$ is regular, and thus also recursively enumerable.

Part 2 Computable2015

Let M be a Turing machine such that whenever M accepts a word, it does so in no more than 2015 steps.

9 yes 10 yes	Is $L(M)$ recursively enumerable? Is $L(M)$ recursive?
	Start M with input w and execute 2015 steps. If w has been accepted then $w \in L(M)$, otherwise $w \notin L(M)$. Therefore, $L(M)$ and $\overline{L(M)}$ are both recursively enumerable.
11 no	Let L be a recursively enumerable language. Can it be concluded that $L(M) \cap L$ is recursive?
	Intersection of recursive and recursively enumerable languages is recursively enumerable but not necessarily recursive.
12 yes 13 no 14 yes	Is every primitive recursive function also a μ -recursive function? Does there exist a μ -recursive function that is not WHILE computable? Let f be a primitive recursive function and $g : \{\sharp\}^* \to \{\sharp\}^*$ be defined by $g(\sharp^n) = \sharp^{f(n)}$ for all $n \in \mathbb{N}$. Is g Turing-computable?
	Part 3 Pumping2015 Let
	$L_{1} = \left\{ a^{(3n+1)}b^{n} \mid n \in \mathbb{N}, n < 2015 \right\} \subset \left\{ a, b \right\}^{*},$ $L_{2} = \left\{ a^{m}b^{n} \mid m, n \in \mathbb{N}, m > n > 1 \right\} \subset \left\{ a, b \right\}^{*}.$
15 yes	Is there a deterministic finite state machine M such that $L(M) = L_1$?
	The language L_1 is finite and thus regular.
16 no 17 yes 18 yes	Is there a deterministic finite state machine M' such that $L(M') = L_2$? Is there an enumerator Turing machine G such that $Gen(G) = L_1$? Is there a deterministic finite state machine D such that $L(D) = L_1 \cap L_2$?
	The language $L_1 \cap L_2$ is finite and thus regular.
19 yes 20 yes	Is there a language L such that $L \cup L_2$ is regular? Are there two languages X_1 and X_2 that are not regular, but for which $X_1 \cup X_2$ is regular?
	Yes. Take $X_1 = \{ a^n b^n \mid n \in \mathbb{N} \}$ and $X_2 = \{ a^n b^m \mid n, m \in \mathbb{N}, n \neq m \}.$
	Part 4 WhileLoop2015 Let T_1 and T_2 be two Turing machines. Assume that T_1 and T_2 compute partial functions $t_1, t_2 : \mathbb{N} \to \mathbb{N}$, respectively, and that t_1 is a total function whereas t_2 is undefined for at least one input $i \in \mathbb{N}$. (We assume that a natural number n is encoded on the tape as a string of n letters 0.)
21 no	Can it be concluded that there is a primitive recursive function that computes t_1 ?
	The Ackermann function ack is a total function that is not primitive recursive. Hence, if T_1 is the Turing machine that computes $t_1(n) = \operatorname{ack}(n, n)$, then we can assume that T_1 holds on every input. However, t_1 is not primitive recursive.
22 yes	Is there a WHILE-program that computes t_2 ?
	Every Turing machine can be simulated by a WHILE-program.
23 yes	$Is \ every \ primitive \ recursive \ function \ computable \ by \ a \ WHILE\-program?$

Part 5 | Open2015

((2 points))

Let $N = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite state machine with $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{0, 1\}, S = \{q_0\}, F = \{q_0, q_3\}, and transition function <math>\delta$ as given below.

1. Let X_i denote the regular expression for the language accepted by N when starting in state q_i .

Write down an equation system for X_0, \ldots, X_3 .

2. Give a regular expression r such that L(r) = L(N) (you may apply Arden's Lemma to the result of 1).

$$X_{0} = (0+1)X_{1} + 1X_{2} + \varepsilon$$

$$X_{1} = (0+1)X_{1} + 0X_{2}$$

$$X_{2} = 0X_{3}$$

$$X_{3} = \varepsilon$$

$$r = \varepsilon + 10 + (0+1)(0+1)^{*}00$$