Gruppe	Hemmecke (10:15) Hemmecke (11:00)	Popov								
Name		Matrikel						SKZ		

Klausur 1
 Berechenbarkeit und Komplexität

20. November 2015

Part 1 NFSM2015
Let N be the nondeterministic finite state machine

$$
\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\}, \nu,\left\{q_{0}\right\},\left\{q_{0}, q_{2}\right\}\right)
$$

whose transition function ν is given below.

$\mathbf{1}$		no	Is $1101100100100 \in L(N) ?$

A word $w \in L(N)$ with $|w|>1$ never ends with 00.

$\mathbf{2}$		no
$\mathbf{3}$	yes	

Is $L(N)$ finite?
Let N^{\prime} be the NFSM that is constructed from N by solely reversing the arrow $q_{2} \rightarrow q_{0}$ (the one with the letter 1) in the diagram above. Is $L\left(N^{\prime}\right)$ finite?

$$
L\left(N^{\prime}\right)=\{\epsilon, 0,1,110\}
$$

| 4 | yes | Does there exist a regular expression r such that $L(r)=\overline{L(N)}=\{0,1\}^{*} \backslash$ |
| :--- | :--- | :--- | $L(N)$?

$L(N)$ is regular and so is its complement.
 a regular language?

$\mathbf{6}$	yes	
$\mathbf{7}$	yes	

Is there an enumerator Turing machine G such that $G e n(G)=L(N)$?
Is there a deterministic finite state machine M with less than 24 states such that $L(M)=L(N)$?

According to the subset construction, there must be a DFSM with at most $2^{4}=16$ states.

| $\mathbf{8}$ | yes | |
| :--- | :--- | :--- | :--- |

$L(N)$ is regular. Hence, $L(N)^{*}$ is regular, and thus also recursively enumerable.

Part 2 Computable2015

Let M be a Turing machine such that whenever M accepts a word, it does so in no more than 2015 steps.

$\mathbf{9}$	yes		Is $L$$(M)$ recursively enumerable?
$\mathbf{1 0}$	yes		Is $L(M)$ recursive?

Start M with input w and execute 2015 steps. If w has been accepted then $w \in L(M)$, otherwise $w \notin L(M)$. Therefore, $L(M)$ and $\overline{L(M)}$ are both recursively enumerable.

| $\mathbf{1 1}$ | | no Let L be a recursively enumerable language. Can it be concluded that |
| :--- | :--- | :--- | :--- | $L(M) \cap L$ is recursive?

Intersection of recursive and recursively enumerable languages is recursively enumerable but not necessarily recursive.

$\mathbf{1 2}$	yes	
$\mathbf{1 3}$		no
$\mathbf{1 4}$	yes	

Is every primitive recursive function also a μ-recursive function?
Does there exist a μ-recursive function that is not WHILE computable?
Let f be a primitive recursive function and $g:\{\sharp\}^{*} \rightarrow\{\sharp\}^{*}$ be defined by $g\left(\sharp^{n}\right)=\sharp^{f(n)}$ for all $n \in \mathbb{N}$. Is g Turing-computable?

Part 3 Pumping2015
Let

$$
\begin{aligned}
& L_{1}=\left\{a^{(3 n+1)} b^{n} \mid n \in \mathbb{N}, n<2015\right\} \subset\{a, b\}^{*} \\
& L_{2}=\left\{a^{m} b^{n} \mid m, n \in \mathbb{N}, m>n>1\right\} \subset\{a, b\}^{*}
\end{aligned}
$$

| $\mathbf{1 5}$ | yes | \quad Is there a deterministic finite state machine M such that $L(M)=L_{1}$? |
| :--- | :--- | :--- | :--- |

The language L_{1} is finite and thus regular.

$\mathbf{1 6}$		no
$\mathbf{1 7}$	yes	
$\mathbf{1 8}$	yes	

Is there a deterministic finite state machine M^{\prime} such that $L\left(M^{\prime}\right)=L_{2}$?
Is there an enumerator Turing machine G such that $\operatorname{Gen}(G)=L_{1}$?
Is there a deterministic finite state machine D such that $L(D)=L_{1} \cap L_{2}$?
The language $L_{1} \cap L_{2}$ is finite and thus regular.

19	yes	
20	yes	

Is there a language L such that $L \cup L_{2}$ is regular?
Are there two languages X_{1} and X_{2} that are not regular, but for which $X_{1} \cup X_{2}$ is regular?

Yes. Take $X_{1}=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ and $X_{2}=\left\{a^{n} b^{m} \mid n, m \in \mathbb{N}, n \neq m\right\}$.

Part 4 WhileLoop2015

Let T_{1} and T_{2} be two Turing machines. Assume that T_{1} and T_{2} compute partial functions $t_{1}, t_{2}: \mathbb{N} \rightarrow \mathbb{N}$, respectively, and that t_{1} is a total function whereas t_{2} is undefined for at least one input $i \in \mathbb{N}$. (We assume that a natural number n is encoded on the tape as a string of n letters 0 .)

| $\mathbf{2 1}$ | | no \quad Can it be concluded that there is a primitive recursive function that com- |
| :--- | :--- | :--- | putes t_{1} ?

The Ackermann function ack is a total function that is not primitive recursive. Hence, if T_{1} is the Turing machine that computes $t_{1}(n)=\operatorname{ack}(\mathrm{n}, \mathrm{n})$, then we can assume that T_{1} holds on every input. However, t_{1} is not primitive recursive.

Is there a WHILE-program that computes t_{2} ?
Every Turing machine can be simulated by a WHILE-program.

Part 5 Open2015
((2 points))
Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a nondeterministic finite state machine with $Q=$ $\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Sigma=\{0,1\}, S=\left\{q_{0}\right\}, F=\left\{q_{0}, q_{3}\right\}$, and transition function δ as given below.

1. Let X_{i} denote the regular expression for the language accepted by N when starting in state q_{i}.
Write down an equation system for X_{0}, \ldots, X_{3}.
2. Give a regular expression r such that $L(r)=L(N)$ (you may apply Arden's Lemma to the result of 1).

$$
\begin{aligned}
X_{0} & =(0+1) X_{1}+1 X_{2}+\varepsilon \\
X_{1} & =(0+1) X_{1}+0 X_{2} \\
X_{2} & =0 X_{3} \\
X_{3} & =\varepsilon \\
r & =\varepsilon+10+(0+1)(0+1)^{*} 00
\end{aligned}
$$

