Problems Solved:

26	27	28	29	30

Name:

Matrikel-Nr.:

Problem 26. Let $Q(x)=\left\{y \in \mathbb{N} \mid x \leq y^{2}\right\} \subseteq \mathbb{N}$ and $f: \mathbb{N} \rightarrow \mathbb{N}$ be the (partial) function

$$
f(x)= \begin{cases}\min Q(x) & \text { if } Q(x) \neq \emptyset \\ \text { undefined } & \text { otherwise }\end{cases}
$$

1. Is f loop computable?
2. Is f a primitive recursive function?
3. Is f a while computable function?
4. Is f a μ-recursive function?

In each case justify your answer. If it is yes, give a corresponding program and/or an explicit definition as (primitive/ μ-) recursive function.
Remark: When defining f, you are allowed to use the Definition 29 and 30 from the lecture notes and the primitive recursive functions (respectively loop programs computing these functions)

$$
m: \mathbb{N}^{2} \rightarrow \mathbb{N}, \quad(x, y) \mapsto x \cdot y
$$

and $u: \mathbb{N}^{2} \rightarrow \mathbb{N}$,

$$
u(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

Other functions or rules are forbidden.
Problem 27. Configurations of a Turing machine $\left(Q, \Gamma, \sqcup, \Sigma, \delta, q_{0}, F\right)$ can be encoded as a terms in various ways; for instance we can encode the configuration

as the term

$$
g\left(q, z, f\left(x_{1}, f\left(x_{2} \cdots f\left(x_{m}, e\right)\right)\right), f\left(y_{1}, f\left(y_{2} \cdots f\left(y_{m}, e\right)\right)\right)\right)
$$

In the picture, q is the state of the head and the symbols $x_{m}, \ldots, x_{1}, z, y_{1}, \ldots, y_{n} \in$ Γ describes the tape to the left / under / to the right of the head.
Show how to translate the transition function $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ to a set of term rewrite rules.

1. Give a rewrite rule for each $q \in Q$ and each $c \in \Gamma$ with $\delta(q, c)=\left(q^{\prime}, c^{\prime}, L\right)$
2. Give a rewrite rule for each $q \in Q$ and each $c \in \Gamma$ with $\delta(q, c)=\left(q^{\prime}, c^{\prime}, R\right)$

Hint: It helps to draw pictures of the machine configuration before and after a transition and to translate both configurations to terms.

Problem 28.

(a) The NFSM

$$
A=\left(Q, \Sigma, \delta, Q_{0}, F\right)
$$

over the alphabet $\Sigma=\{a, b\}$ with the states $Q=\{0,1,2\}$, and the starting states $Q_{0}=\{0\}$ and accepting states $F=\{2\}$ is given by the following picture.

Give a right-linear grammer $G=(N, \Sigma, P, S)$ with $L(G)=L(A)$ and give a derivation for the sentence $b a b$.
(b) Now, let $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ be an arbitrary NFSM. Give a right linear grammar $G=(N, \Sigma, P, S)$ with $L(G)=L(A)$.

Problem 29. Consider the grammar $G=(N, \Sigma, P, S)$ where $N=\{S\}, \Sigma=$ $\{a, b\}, P=\{S \rightarrow \varepsilon, S \rightarrow a S b S\}$.
(a) Is $a a b a b b \in L(G)$?
(b) Is $a a b a b \in L(G)$?
(c) Does every element of $L(G)$ contain the same number of occurrences of a and b ?
(d) Is $L(G)$ regular?
(e) Is $L(G)$ recursive?

Justify your answers.
Problem 30. Construct a DFSM recognizing $L(G)$ where $G=(\{A, B\},\{a, b\}, P, A)$ with the production rules P given by

$$
\begin{aligned}
& A \rightarrow a A|b B| b \\
& B \rightarrow a A \mid a B
\end{aligned}
$$

Hint: Start by a constructing a NFSM N. Then turn N into a DFSM D sucht that $L(G)=L(N)=L(D)$.
"Construct" means to explain how you turn the grammar into a DFSM. Simply writing down a DFSM D with the required property, does not count as a solution unless you prove that $L(G)=L(D)$.

