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What is Dafny?

„Dafny is a programming language with built-in specification constructs.
The Dafny static program verifier can be used to verify the functional
correctness of programs.“ [8]

Among other programming languages, these and their concepts had big
influence on Dafny:

Java, C# (classes, traits, syntax for functions)
Eiffel (Pre- & Postconditions, Invariants, Asserts)
ML (inductive Datatypes)
...
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Development

Dafny was developed by Microsoft Research (MSR) by K. Rustan M. Leino
(shorter: Rustan Leino) and others [2] in 2008.
Founded in 1991, MSR researches among other subjects on the following:

Algorithms
Social Computing
Software Development
Hardware Development

Some well known experts as Michael Freedman (Mathematician, awarded
with Fields-Medal) or Leslie Lamport work or had worked there.
Some developments of MSR are C# and the Windows Sidebar. [7]
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Development

„Dafny started as a little language and verifier to experiment with a
certain style of specifications (known as "dynamic frames") for programs
that operate on a mutable heap. Since then, Dafny has become a full
program verifier with both imperative (assignments, loops, classes, etc.)
and functional (datatypes, co-datatypes, higher-order functions, etc.)
programming constructs as well as proof authoring facilities (lemmas,
proof calculations, refinement, etc.). It has been used for some systems
projects, including ExpressOS [ASPLOS 2013], Ironclad Apps [OSDI 2014],
and IronFleet [SOSP 2015], and it has been used in various forms of
teaching at more than 30 universities.“ - Rustan Leino
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Development

I would like to call Dafny a living programming language, as there are still
features that are planned to evolve, to be changed, added or left out
completely. [5]

The verification process, (very) briefly summarized:
. Dafny translates code into Boogie (intermediate verification language)
. The Boogie code is then verified using the SMT proofer Z3
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Rustan Leino

Principal Researcher, Microsoft Research
Visiting Professor, Department of Computing,
Imperial College London

My research has centered around tools for software
engineers, including programming languages,
programming tools, programming systems, program
verification, and program design technologies.

Verification Corner:
https://www.youtube.com/channel/UCP2eLEql4tROYmIYm5mA27A
Homepage:
http://research.microsoft.com/en-us/um/people/leino/
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Where can I get Dafny?

Dafny can be tried out at http://rise4fun.com/Dafny/,where one also
can find a very helpful tutorial http://rise4fun.com/Dafny/tutorial
and examples.
If you want to get more serious, you can download it from
http://dafny.codeplex.com/ and run it from the command line, or,
what I actually recommend, running it in Microsoft Visual Studio (2012). I
will give a demo of that at the end of this presentation.
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Postcondition and Precondition

Typically, every algorithm has specific Input and Output Conditions! These
concept is realized in Dafny by using requires and ensures.

Skeleton of a Method
method Algorithm1(x:int,y:real) returns (z:nat)

//Comment

requires <Precondition1>

← Callers responsibility

requires <Precondition2>;

. . .

ensures <Postcondition1>

← Programmers responsibility

ensures <Postcondition2>;

. . .

{

. . .

}
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Asserts

Whereas requires and ensures are verified at the beginning resp. at the end
of a Method/Function, it is sometimes needed/useful to check if a certain
assertion holds at a certain place or time in the programm.
For this purpose, one can place

method ComputeTesseract(x:int) returns (z:int)

requires -100<=x<=100

ensures z>=0

{

z:=x*x*x*x;

assert z>=x;

← The semikolon here is needed.

}

everywhere in the Function or Method body. The assertion must then hold
where it is placed.
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Functions

Skeleton of a Function
function square(x:int): nat

//Returns the square of the Integer value

ensures x*x>=0

{

x*x

}

Sometimes, you might see predicate used instead of function, and the
„return type“ missing, as a Predicate is a Function that returns bool. So
somehow this is just a shorter way of writing a Function, that corresponds
to an attribute. Also, sometimes you might see function method used, that
just means that this is a Function as well as a Method, so you can use the
best of both worlds.
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Functions

On first view, one might think, that Functions are very limited, compared
to Methods. Functions can only hold one statement, the code of a
Function is not compiled and they can only be used in annotations.

But, the power of Function comes from the fact that they can be used in
annotations, while Methods cannot.

method Pythagoras(a:int,b:int) returns(c:int)

{

}

This means, one can use Functions to prove correctness of a Method.
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Functions

So for the Tesseract Method we can use:

method ComputeTesseract(x:int) returns (z:int)

requires -100<=x<=100

ensures z>=0

ensures z==square(square(x))

{
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Framing

For every variable, or object, that is allocated on the heap or accessed
through references, Dafny needs to know what parts of the memory are
accessed or even modified by a Function or Method.

A Method is allowed
to read everything, but it has to be specified with the modifies annotation
what heap allocated memory areas it is allowed to change.
A Function must be allowed to access heap allocated memory with the
reads annotation. By definition, a Function is not allowed to modify
anything, so we don’t need to specify that.
Bear in mind, that local variables, sets, sequences and multisets - that are
treated like local variables or integers - cannot/need not to be mentioned
in such annotations.
I will give some examples later.
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Loop Invariants

Dafny faces a real problem when it reaches the beginning of a loop or a
recursion. It has to prove correctness, that means to „go all possible ways“,
of a loop. One can easily imagine that this is impossible in general. What
it does to solve this problem is, to view the loop as a black box. It is then
the programmers duty to provide loop invariants. Dafny then tries to proof
that the invariant holds at entering and at every execution of the loop.

var i: int :=0;

while i<n

invariant 0<=i<=n

{

i:=i+1;

}

var i, a, b := 1,0,1;

while i<n

invariant 0<=i<=n

invariant a==fib(i-1)

invariant b==fib(i)

{

a, b:=b,a+b;

i:=i+1;

}
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Loop Invariants

To find the right Invariants is very difficult,

a good tactics is to work from
the postcondition upwards.
As an example of the amount of invariants needed should the
Schorr-Waite Algorithm (Written in Dafny) [3] serve.

about 1
4 of the whole code (including comment),

about 1
3 of the „core Method“ and

more than 1
2 of the core loop are code lines for invariants/decreases.
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Termination of Loops and Recursions
In some (easy) cases, Dafny can proof termination of loops and recursions
without any help. But after programming a few easy recursive Functions or
Methods, one will see that Dafny can really prove termination of very little
recursions and loops. The programmer then must help Dafny with
providing the decreases annotation.

while 0 <i

invariant 0<=i

decreases i

{

i:=i-1;

}

While most of the time this will be an integer, every expression, that:
1 Gets smaller and
2 Is bounded

can be used.
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Boolean Operators

Besides the already presented Numeric Types, Dafny also provides Boolean
variables. A Boolean value can either be true or false, which are also the
corresponding literals.
With Boolean values and expressions one can use the following operators:

a && b; a || b; !a;

// AND (conjunction), OR (disjunction), NOT (negation)

0 <= x ==> x == y // IMPLIES, also possible is <==
(x > 0) && (y > 0) <==> x == y // IFF, „==> & <==“

Of course one can also test equality (==) and inequality (!=) with
boolean values and expressions.
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Quantifiers

Like every modern program language, Dafny also allows the use of Arrays,
and many other Collection Types, such as Sets, Multisets, Sequences and
so on. Using such concepts, one certainly will sooner or later face the
problem that one want to implement something like

„All elements of the set should have a property p“
„No index of the Array is equal to zero“,
or even more abstract, one might want something like „There is e1
and e2 in a set, such that x+e1=x and x*e2=x, for every x in the set“.

Dafny allows even such more abstract constructs, using quantifiers.

predicate haszero(a:set<int>)

{

exists j :: j in a && (forall i :: i in a ==> j + i == i)

}
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Sets and Multisets
The main difference between a Set and a Multiset is just, that a set does
not count how often an element is contained, a Multiset does. So I will
just give a few examples on how to specify and calculate with sets. (Note
that unlike Arrays, Sets are not allocated on the heap)

var empty := {}; //Empty Set

var ftp, stp := {2, 3}, {5, 7};

var unite := ftp + stp; // {2,3,4,5}

assert (stp * ftp == {}) && (|ftp| == 2); // This Assertion holds

var diff := ftp - {2}; // {3}

U can use <=, <, >, =>︸ ︷︷ ︸
(proper) subset

and ==, ! =, !!︸ ︷︷ ︸
(in)equality, disjointness

as well as in, !in︸ ︷︷ ︸
element membership

Another, really nice, way to generate sets is using the following construct:

var s := set x: nat | x < 100 :: isprime︸ ︷︷ ︸
must be a function method

(x) == true;
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Sets and Multisets
The main difference between a Set and a Multiset is just, that a set does
not count how often an element is contained, a Multiset does. So I will
just give a few examples on how to specify and calculate with sets. (Note
that unlike Arrays, Sets are not allocated on the heap)

var empty := {}; //Empty Set

var ftp, stp := {2, 3}, {5, 7};
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Sequences
Also Sequences, that represent ordered lists, are not allocated on the heap,
so they are also immutable, once created. Some examples on handling and
slicing Sequences:

var empty := [ ]; //Empty Sequence

var s := [2, 3, 5, 7, 11, 13, 17, 19];

s[|s|-1 .. |s|];

s[|s|-1];

// [19],

19

s[1 .. ];

s[ .. |s|-1];

//

[2, 3, 5, 7, 11, 13, 17], [3, 5, 7, 11, 13, 17,
19]

assert s == s[0 .. ] == s[ .. |s|] == s[0 .. |s|] == s[ .. ] // This
Assertion holds

The reverse operation of slicing is concatenateing.

[2, 3, 5, 7,] + [11, 13, 17, 19] + [ ]// [2, 3, 5, 7, 11, 13, 17, 19]

Also, one can check if an element is contained within a sequence.

assert 2 in s; assert 4 !in s; // These Assertions hold
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Sequences

Another very useful kind of abbrevation is the „Update“ notation. One has
to bear in mind though, that a Sequence, as it is immutable, cannot be
updated, so instead of saying a sequence is updated, it is more precise to
say, that a new sequence, identical up to one element, is created.

var s:= [1, 1, 2, 3, 4, 5];

var t:=s[0:=0] // [0, 1, 2, 3, 4, 5]

All these operations work for Arrays as well (when they are transferred into
sequences with the slicing operator).

var a:= new int[3];

a[0], a[1], a[2]:=3, 2, 1;

assert 2 in a[ .. ] // This Assertion holds
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(In)Finite Maps
Maps are associative arrays, transforming a Key into a Value, that need
not have the same type. The difference between Finite and Infinite Maps,
is that Infinite Maps are allowed to have an infinite domain.

The domain
of a Map is the set of keys for which that the Map has values. Iff the
domains of two Maps are disjoint, then the Maps are disjoint (!!) and their
unification (+) is defined.[∗!] The union of the original Maps assigns keys
to the same values as the original Maps.

var m1:= map[0:=’ ’,3:=’c’,5:=’e’,8:=’h’,9:=’i’];

// This is a map from int to char

var m2:= map[11:=’l’,14:=’o’,17:=’r’,18:=’s’];

assert m1 !! m2; // This Assertion holds
[∗!] var m:=m1+m2;
[∗!] print m[8],m[5],m[11],m[11],m[14],m[0],m[17],m[9],m[18],m[3];
[∗!] // hello risc

[∗!] This is planned as future update/feature.
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domains of two Maps are disjoint, then the Maps are disjoint (!!) and their
unification (+) is defined.[∗!] The union of the original Maps assigns keys
to the same values as the original Maps.

var m1:= map[0:=’ ’,3:=’c’,5:=’e’,8:=’h’,9:=’i’];

// This is a map from int to char

var m2:= map[11:=’l’,14:=’o’,17:=’r’,18:=’s’];

assert m1 !! m2; // This Assertion holds
[∗!] var m:=m1+m2;
[∗!] print m[8],m[5],m[11],m[11],m[14],m[0],m[17],m[9],m[18],m[3];

[∗!] // hello risc

[∗!] This is planned as future update/feature.
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(In)Finite Maps

Similar to Sets, Maps can be defined using constructs like

var qn:= map i: nat | 0<=i<=15 :: i * i;

For constructing Infinite Maps, using imap one basically has the same
possibilities as for Finite Maps. Please note, that Infinite Maps can only be
unbounded in a ghost context.

ghost: used for verification, but not needed
at runtime, so ghost variables will not compiled. You will see an example
in the demo I will give.

var tesseracts:= imap i: nat| 0 < i :: i*i*i*i;

For Finite Maps one can also calculate the map cardinality

ghost var m1:= map[0:=’ ’,3:=’c’,5:=’e’,8:=’h’,9:=’i’];

assert |m1| == 5; // This Assertion holds
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Type Synonyms and Opaque Types
For some projects it can be nice to have synonyms for certain types. Dafny
allows defining such synonyms with the type keyword.

type audience = set<persons>

type complexnum = (real,real) // ( . , . ) is a Tuple

Such Type Synonyms are, as you would expect, just synonyms, so they
have the exact same behavior as the original datatype. A special case of
these synonyms are Opaque Types. They are declared, by simply leaving
the right side of the type declaration empty. If one wants to point out,
that the opaque type is equality supporting, „(==)“ is added to the
declaration.

type T

type ES(==)

The reason for declaring such Opaque Types is, that they can be revealed
in a module. Using Opaque Types is using higher level of abstractness.
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Newtypes and Conversion
In Dafny it is also possible to define new numeric types, using the newtype
keyword.

newtype interval = x: real | -1.0 <= x < 1.0

When using newtype one has to bear in mind, that the declared type is not
compatible with the base type, when using comparison operators for
example. As „−3.0“ is not from type interval, the compiler throws an
error. We are able to correct this by converting x to real again.

var x: interval := 0.5;

Like the function real(.) you see above, every numeric type has a
corresponding conversion function with the same name. To convert from
real to int, using the „trunc“ function is mandatory:

var euler:= 2.71828;

assert euler.Trunc == 2; // This assertion holds
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Other Types

Besides the base types (Boolean, Characters and Numerics), the Collection
Types and the other presented Types, there are various other Types and
Concepts that are known from other programming languages, such as:

Classes class
Traits trait

∼= Interfaces/Abstract Superclasses

Inductive Datatypes datatype

∼= Finite Trees

Co-inducive Datatypes codatatype

∼= Infinite Trees or Streams

Also, the Functions, I already presented, are a seen as Types. The reads
and requires of a Function are Functions themselves.
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Lemmas
Lemmas are used, when the steps to prove a programm are to complex for
Dafny to discover them on its own.
Lemmas are ghost methods (can be replaced for better readability with
lemma) or function Lemmas (usually a certain predicate).

The correctness of the step must follow from the postcondition of the
Lemma (or chain of Lemmas), but there are two possible ways to verify
the correctness of a programm with Lemmas.

. Leave the Method body empty and prove it for example
mathematically.

Leaving the body empty is always good for a first approach, as one can see
if the provided postcondition of the Lemma is strong enough. Sometimes
this way also seems to be the only possible one.

. Prove the code by code, i.e. fill the Method body with the needed
code.

This means, one has to „poke“ Dafny into the right direction, to make it
consider things it knows but does not consider. This is usually done by a
chain of Assertions, Case distinction,...
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