Problems Solved:

21	22	23	24	25

Name:

Matrikel-Nr.:

Problem 21. Let f be a primitive recursive function defined by the recursive equations

$$
f(0, y)=2, \quad f(x+1, y)=f(x, y)^{y}
$$

1. Compute $f(3,3)$.
2. Show that f is indeed a primitive recursive function by defining it explicitly from the base functions, the (primitive recursive) function $\varepsilon(x, y)=x^{y}$, composition, and the primitive recursion scheme.

Problem 22.

1. Show by using only the Definition of a loop program (Def. 23 in the lecture notes, Section 3.2.2) that the function

$$
s\left(x_{1}, x_{2}\right)= \begin{cases}1 & \text { if } x_{1}<x_{2} \\ 0 & \text { otherwise }\end{cases}
$$

is loop computable. I.e. give an explicit loop program for s.
Note that it is not allowed to use an abbreviation like

$$
\mathrm{x}_{\mathrm{i}}:=\mathrm{x}_{\mathrm{j}}-\mathrm{x}_{\mathrm{k}}
$$

2. Write a loop program that computes the function $d: \mathbb{N} \rightarrow \mathbb{N}$ where $d\left(x_{1}, x_{2}\right)$ is $k \in \mathbb{N}$ such that $k \cdot\left(x_{2}+1\right)=x_{1}+1$ if such a k exists. The result is $d\left(x_{1}, x_{2}\right)=0$, if a k with the above property does not exist.
For simplicity in the program for d, you are allowed to use a construction like the following (with the obvious semantics) where P is an arbitrary loop program.

$$
\text { IF } x_{i}<x_{j} \text { THEN P END }
$$

Problem 23. Let $S: \mathbb{N} \rightarrow\{0,1\}$ be defined by

$$
S(x)= \begin{cases}1 & \text { if } x \text { is the square of some natural number } \\ 0 & \text { otherwise }\end{cases}
$$

1. Write a logical formula for the statement " x is the square of some natural number" used in the definition of S.
2. Show that S is primitive recursive by giving a primitive recursive definition of S.
3. Show that S is loop computable by giving a loop program that computes S.

Hint: It is OK to assume that the equality check and multiplication are primitive recursive as well as loop computable. The equality check e is given by $e(x, y)=1$ if $x=y$ and $e(x, y)=0$ otherwise. Any predicate P can be encoded as a function f. We define $f(x):=1$ if $P(x)$ is true and $f(x):=0$ if $P(x)$ is false.

Problem 24. Let P be the following program for counting how many of the first n odd numbers starting with 3 are prime.

```
s :=0
i :=3
LOOP n DO
    p = isprime(i)
        IF p = 1 THEN s := s+1
        END;
    i := i+2
```

END;
Convert P into primitive recursive function, provided isprim is a given loop program (you may assume that a corresponding primitive recursive function isprim is given as well).

Problem 25. Let p, s, and f be defined as:

$$
\begin{array}{r}
p(x):=\mu y \cdot s(x, y)=1 \\
s(x, 0):=x \\
s(x, y+1):=f(s(x, y)) \\
f(n)= \begin{cases}3 n+1 & \text { if } n \text { is odd } \\
\frac{n}{2} & \text { if } n \text { is even } .\end{cases}
\end{array}
$$

1. Provide an explicite computation of $p(3)$.
2. Construct a while program that computes p.
3. Based on what you read (e.g. in Wikipedia) about the Collatz-Problem (or Collatz conjecture), do you think that p is primitive recursive or not? Justify your answer.
