Problems Solved:

11	12	13	14	15

Name:

Matrikel-Nr.:

Problem 11. Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be two DFSM over the alphabet Σ. Let $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$ be the languages accepted by M_{1} and M_{2}, respectively.
Construct a DFSM $M=(Q, \Sigma, \delta, q, F)$ whose language $L(M)$ is the intersection of $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$. Write down Q, δ, q, and F explicitly.
Hint: M simulates the parallel execution of M_{1} and M_{2}. For that to work, M "remembers" in its state the state M_{1} as well as the state of M_{2}. This can be achieved by defining $Q=Q_{1} \times Q_{2}$.
Demonstrate your construction with the following DFSMs.

Problem 12. Answer the following questions:
(a) Is the language $L:=\left\{a^{m} b^{n} c^{p} \mid m, n, p \in \mathbb{N} \backslash\{0\}\right\}$ over the alphabet $\Sigma=$ $\{a, b, c\}$ regular?
(b) Is the language $L=\left\{a^{m} b^{n} c^{m+n} \mid m, n \in \mathbb{N}\right\}$ over the alphabet $\Sigma=\{a, b, c\}$ regular?

Justify your answers by giving a regular expression for the language or by using the Pumping Lemma.

Problem 13. Let M_{1} be the DFSM with states $\left\{q_{0}, q_{1}, q_{2}\right\}$ whose transition graph is given below. Determine a regular expression r such that $L(r)=L\left(M_{1}\right)$. Show the derivation of the the final result by the technique based on Arden's Lemma (see lecture notes).

Problem 14. Let r be the following regular expression.

$$
(a b+b a)^{*}+b b
$$

Construct a nondeterministic finite state machine N such that $L(N)=L(r)$. Show the derivation of the result by following the technique presented in the proof of the theorem Equivalence of Regular Expressions and Automata (see lecture notes).

Problem 15. Construct a Turing machine $M=\left(Q, \Gamma, \sqcup,\{0,1\}, \delta, q_{0}, F\right)$ such that $L(M)=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}^{+}\right\}$. Write down Q, Γ, F and δ explicitly.

