Performance Analysis of Cluster Networks

Performer: Ádám Tóth University of Debrecen Faculty of Informatics

June 24, 2015

Content

Introduction

- Cluster networks
- Emerging problems and questions

Investigated models

- Characteristics of the system
- Parameters
- Buffer schemes

- More important performance measures
- Energy consumption

Future plans

Introduction

Ádám Tóth

Performance Analysis of Cluster Networks 2 / 30

Cluster

Definition of the cluster

The clusters are such parallel computational systems with great performance, which have the following properties:

Cluster

Definition of the cluster

The clusters are such parallel computational systems with great performance, which have the following properties:

• Cluster is created by the interconnection of computers which configuration is full (processor, memory, I/O units)

Cluster

Definition of the cluster

The clusters are such parallel computational systems with great performance, which have the following properties:

- Cluster is created by the interconnection of computers which configuration is full (processor, memory, I/O units)
- The nodes of the cluster are loosely coupled and the interconnection of the nodes happen typically with the help of local networks

Cluster

Definition of the cluster

The clusters are such parallel computational systems with great performance, which have the following properties:

- Cluster is created by the interconnection of computers which configuration is full (processor, memory, I/O units)
- The nodes of the cluster are loosely coupled and the interconnection of the nodes happen typically with the help of local networks
- The cluster can be used as one uniform computational resource

Cluster

The goals of establishing cluster networks:

• Achieving high performance capacity with the assistance of relatively simple components

- Achieving high performance capacity with the assistance of relatively simple components
- Reducing costs

- Achieving high performance capacity with the assistance of relatively simple components
- Reducing costs
- High availability

- Achieving high performance capacity with the assistance of relatively simple components
- Reducing costs
- High availability
- Load balancing

Introduction

Investigated models

Results 00000000000000 Future plans

Investigated problems and questions

• Optimal utilization of the resources

Future plans

- Optimal utilization of the resources
- The role of job scheduling

- Optimal utilization of the resources
- The role of job scheduling
 - For the performance of the whole system

- Optimal utilization of the resources
- The role of job scheduling
 - For the performance of the whole system
 - For the energy consumption of the whole system

- Optimal utilization of the resources
- The role of job scheduling
 - For the performance of the whole system
 - For the energy consumption of the whole system
- Power reduction techniques (e.g. DPM)

• Resources can have different properties in the system

Introduction

 Resources can have different properties in the system system is heterogeneous

Introduct	ion

- Resources can have different properties in the system system is heterogeneous
- Servers with the same properties can be classified into one group

Introd	

- $\bullet\,$ Resources can have different properties in the system $\Longrightarrow\,$ The system is heterogeneous
- Servers with the same properties can be classified into one group \implies 3 clusters

- $\bullet\,$ Resources can have different properties in the system $\Longrightarrow\,$ The system is heterogeneous
- Servers with the same properties can be classified into one group \Longrightarrow 3 clusters
- Aspects of job scheduling:
 - High performance priority (HP)

- $\bullet\,$ Resources can have different properties in the system $\Longrightarrow\,$ The system is heterogeneous
- Servers with the same properties can be classified into one group \Longrightarrow 3 clusters
- Aspects of job scheduling:
 - High performance priority (HP)
 - Energy efficiency priority (EE)

- $\bullet\,$ Resources can have different properties in the system $\Longrightarrow\,$ The system is heterogeneous
- Servers with the same properties can be classified into one group \Longrightarrow 3 clusters
- Aspects of job scheduling:
 - High performance priority (HP)
 - Energy efficiency priority (EE)
- Applied buffer schemes:
 - Separate Queue

- $\bullet\,$ Resources can have different properties in the system $\Longrightarrow\,$ The system is heterogeneous
- Servers with the same properties can be classified into one group \Longrightarrow 3 clusters
- Aspects of job scheduling:
 - High performance priority (HP)
 - Energy efficiency priority (EE)
- Applied buffer schemes:
 - Separate Queue
 - Class Queue

- $\bullet\,$ Resources can have different properties in the system $\Longrightarrow\,$ The system is heterogeneous
- Servers with the same properties can be classified into one group \Longrightarrow 3 clusters
- Aspects of job scheduling:
 - High performance priority (HP)
 - Energy efficiency priority (EE)
- Applied buffer schemes:
 - Separate Queue
 - Class Queue
 - Common Queue

Accumptions			
000		000000000000000000000000000000000000000	Future plans
la tura al continua	In continue and an endals	Desults	Eutoma alama

• Jobs come to the system from a finite source and every individual in the source generate jobs according to exponential distribution with parameter λ

Introduction	Investigated models	Results	Future plans
000	00●00000	000000000000	
Assumptions			

- Jobs come to the system from a finite source and every individual in the source generate jobs according to exponential distribution with parameter λ
- The service time of the jobs are exponential:
 - First class with parameter μ_1

Introduction 000	Investigated models	Results 000000000000	Future plans
Assumptions			

- Jobs come to the system from a finite source and every individual in the source generate jobs according to exponential distribution with parameter λ
- The service time of the jobs are exponential:
 - First class with parameter μ_1
 - Second class with parameter μ_2

Introduction 000	Investigated models	Results 000000000000	Future plans
Assumptions			

- Jobs come to the system from a finite source and every individual in the source generate jobs according to exponential distribution with parameter λ
- The service time of the jobs are exponential:
 - First class with parameter μ_1
 - Second class with parameter μ_2
 - Third class with parameter μ_3

Introduction 000	Investigated models	Results 000000000000	Future plans
Assumptions			

- Jobs come to the system from a finite source and every individual in the source generate jobs according to exponential distribution with parameter λ
- The service time of the jobs are exponential:
 - First class with parameter μ_1
 - Second class with parameter μ_2
 - Third class with parameter μ_3

General principles in connection with the jobs:

• First Come First Served (FCFS) service policy

Introduction 000	Investigated models	Results 000000000000	Future plans
Assumptions			

- Jobs come to the system from a finite source and every individual in the source generate jobs according to exponential distribution with parameter λ
- The service time of the jobs are exponential:
 - First class with parameter μ_1
 - Second class with parameter μ_2
 - Third class with parameter μ_3

- First Come First Served (FCFS) service policy
- Their service demands are unknown to the local scheduler

Introduction 000	Investigated models	Results 000000000000	Future plans
Assumptions			

- Jobs come to the system from a finite source and every individual in the source generate jobs according to exponential distribution with parameter λ
- The service time of the jobs are exponential:
 - First class with parameter μ_1
 - Second class with parameter μ_2
 - Third class with parameter μ_3

- First Come First Served (FCFS) service policy
- Their service demands are unknown to the local scheduler
- Jobs are uninterrupted under service (non preemptible property)

Introduction 000	Investigated models	Results 000000000000	Future plans
Assumptions			

- Jobs come to the system from a finite source and every individual in the source generate jobs according to exponential distribution with parameter λ
- The service time of the jobs are exponential:
 - First class with parameter μ_1
 - Second class with parameter μ_2
 - Third class with parameter μ_3

- First Come First Served (FCFS) service policy
- Their service demands are unknown to the local scheduler
- Jobs are uninterrupted under service (non preemptible property)
- Jobs are atomic, which can not be divided into smaller pieces

Introduction 000	Investigated models	Results 000000000000	Future plans
Assumptions			

- Jobs come to the system from a finite source and every individual in the source generate jobs according to exponential distribution with parameter λ
- The service time of the jobs are exponential:
 - First class with parameter μ_1
 - Second class with parameter μ_2
 - Third class with parameter μ_3

- First Come First Served (FCFS) service policy
- Their service demands are unknown to the local scheduler
- Jobs are uninterrupted under service (non preemptible property)
- Jobs are atomic, which can not be divided into smaller pieces
- Any server can execute them

Server type	Cs	$P_{ac,*}(W)$	$C_{\rm s}/P_{\rm ac,*}$	$P_{id,*}$ (W)
Acer AW2000h-Aw170h F2	6/10263	1700	3776	364
$(Intel Xeon E5-2670)^1$	0419205	1700	5110	504
Acer AW2000h-Aw170h F2	5286503	1075	1116	221
(Intel Xeon E5-2660) ²	5200505	1275	4140	551
PowerEdge R820	2700066	457	6102	109
(Intel Xeon E5-4650L) ³	2190900	437	0102	100

Table 1: Measured results

- $\bullet~$ Cs Number of operations finished per second
- $P_{ac,*}$ (W) measured average power consumption at 100% target load
- C_s/P_{ac,*} energy efficiency: larger number of ratio means more energy efficiency
- P_{id},* (W) measured average power consumption at 0% target load

¹https://www.spec.org/power_ssj2008/results/res2012q4/power_ssj2008-20120918-00546.html. ²https://www.spec.org/power_ssj2008/results/res2013q1/power_ssj2008-20121212-00590.html. ³https://www.spec.org/power_ssj2008/results/res2012q4/power_ssj2008-20121113-00586.html.

Buffer schemes

Ádám Tóth

Performance Analysis of Cluster Networks 10 / 30

Figure 1: Separate Queue Scheme

÷.,		
	D 100	l oth
Au	аш	TOUL

Figure 2: Class Queue Scheme

Ádám Tóth

Figure 3: Common Queue Scheme

Results in connection with performance measures

Results •000000000000

Future plans

MEAN SERVICE TIME vs. ARRIVAL RATE

Figure 4: Mean service time in function of λ beside applying HP policy

Future plans

Figure 5: Mean service time in function of λ beside applying EE policy

MEAN RESPONSE TIME vs. ARRIVAL RATE

Figure 6: Mean response time in function of λ beside applying HP policy

Ádám Tóth

Figure 7: Mean response time in function of λ beside applying EE policy

Ádám Tóth

Results 00000000000000

Figure 8: Mean waiting time in function of λ beside applying HP policy

Results 0000000000000

Figure 9: Mean waiting time in function of λ beside applying EE policy

Results in connection with energy consumption

Results ○○○○○○●○○○○○

Figure 10: Mean energy consumption of the system beside applying HP policy

AEno-switch vs. ARRIVAL RATE

Figure 11: Mean energy consumption of the system beside applying EE policy

AEswitch-off vs. ARRIVAL RATE

Figure 12: Mean energy consumption of the system in case of switching off the idle servers beside applying HP policy

Ádám Tóth

AEswitch-off vs. ARRIVAL RATE

Figure 13: Mean energy consumption of the system in case of switching off the idle servers beside applying EE policy

Ádám Tóth

Results

Figure 14: The effect of switching off the servers beside applying HP policy

Figure 15: The effect of switching off the servers beside applying EE policy

Future plans

Ádám Tóth

Performance Analysis of Cluster Networks 28 / 30

Introduction 000 Investigated models

Results 00000000000000 Future plans

Further possible ideas, improvements

• Examination of further algorithms

Future plans

- Examination of further algorithms
- Observance of further parameters like server failure

- Examination of further algorithms
- Observance of further parameters like server failure
- Applying more DPM techniques

- Examination of further algorithms
- Observance of further parameters like server failure
- Applying more DPM techniques
- Using more classes

- Examination of further algorithms
- Observance of further parameters like server failure
- Applying more DPM techniques
- Using more classes
- Effects of other different distributions

Thanks for your attention!

Ádám Tóth

Performance Analysis of Cluster Networks 30 / 30