## On quantitative monadic first-order logic

#### George Rahonis

Department of Mathematics Aristotle University of Thessaloniki, Greece

> RISC Colloquium June 22, 2015

Joint work with Eleni Mandrali

# Outline

- A fundamental result on language theory relating *LTL*-definability, *FO*-logic-definability, star-freeness, counter-freeness
- Over idempotent zero-divisor free totally commutative complete semirings:
  - LTL
  - FO logic
  - $(\omega$ -)star-free series
  - Counter-free (Büchi) automata
  - The main result
- Open problems Future research

## Words

• *alphabet A* : is a finite set

• 
$$A^* = \{\varepsilon\} \cup \{a_0 \dots a_{n-1} \mid a_0, \dots, a_{n-1} \in A\}$$
 finite words over A

• 
$$w = a_0 \dots a_{n-1}$$
,  $dom(w) = \{0, 1, \dots, n-1\}$ 

• 
$$w = w(0) \dots w(n-1)$$

• 
$${\mathcal A}^\omega = \{{\mathsf a}_0{\mathsf a}_1 \dots \mid {\mathsf a}_0, {\mathsf a}_1, \dots \in {\mathcal A}\}$$
 infinite words over  ${\mathcal A}$ 

• 
$$w = a_0 a_1 \dots$$
,  $dom(w) = \omega(=\mathbb{N})$ 

• 
$$w = w(0)w(1)\ldots$$

• 
$$w_{\geq i} = w(i)w(i+1)..., (i \geq 0)$$

æ

• • • • • • • •

- $L\subseteq A^*~({\sf finitary})$  language
- $L\subseteq A^\omega$  infinitary language

- $A = \{a, b, c\}$
- L the (finitary) language of words with at least one occurrence of a

Automaton



- $A = \{a, b, c\}$
- L the (finitary) language of words with at least one occurrence of a
- Expression: A\* aA\*

- $A = \{a, b, c\}$
- L the (finitary) language of words with at least one occurrence of a
- Expression: A\* aA\*
- Monadic first-order logic sentence:  $\exists x.P_a(x)$

- $A = \{a, b, c\}$
- L the (finitary) language of words with at least one occurrence of a
- Expression: A\* aA\*
- Monadic first-order logic sentence:  $\exists x.P_a(x)$
- Linear temporal logic (LTL) formula: ◇p<sub>a</sub>

• A (nondeterministic) Büchi automaton

$$\mathcal{A} = (\mathcal{Q}, \mathcal{A}, \mathcal{I}, \Delta, \mathcal{F})$$

- Q: the finite state set
- A: the input alphabet
- $I \subseteq Q$ : the *initial state set*
- $\Delta \subseteq Q \times A \times Q$ : the set of transitions
- $F \subseteq Q$ : the final state set
- $w = a_0 a_1 \ldots \in A^{\omega}$
- path of  ${\mathcal A}$  over w

$$extsf{P}_{w} = ( extsf{q}_{0}, extsf{a}_{0}, extsf{q}_{1})( extsf{q}_{1}, extsf{a}_{1}, extsf{q}_{2}) \ldots \in \Delta^{\omega}$$

• 
$$P_w$$
: successful if  $q \in F$  occurs infinitely often

• R. McNaughton and S. Papert (1971): (counter-free finite automata)

- R. McNaughton and S. Papert (1971): (counter-free finite automata)
- V. Diekert and P. Gastin (2007):

- R. McNaughton and S. Papert (1971): (counter-free finite automata)
- V. Diekert and P. Gastin (2007):
- Nondeterministic counter-free Büchi automaton A:

- R. McNaughton and S. Papert (1971): (counter-free finite automata)
- V. Diekert and P. Gastin (2007):
- Nondeterministic counter-free Büchi automaton  $\mathcal{A}$ :
- $q \in Q$ ,  $w \in A^*$ ,  $n \ge 1$ , if there is a path

$$q \xrightarrow{w''} q$$

- R. McNaughton and S. Papert (1971): (counter-free finite automata)
- V. Diekert and P. Gastin (2007):
- Nondeterministic counter-free Büchi automaton  $\mathcal{A}$ :
- $q \in Q$ ,  $w \in A^*$ ,  $n \ge 1$ , if there is a path

$$q \xrightarrow{w^n} q$$

• then there is a path

$$q \xrightarrow{w} q$$

#### • Syntax

$$\varphi ::= \textit{true} \mid P_{\textit{a}}(x) \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x \, \centerdot \, \varphi$$

 $a \in A$ , x, y first-order variables

- false =  $\neg$ true
- $\neg \neg \varphi = \varphi$
- $\varphi \land \psi = \neg (\neg \varphi \lor \neg \psi)$
- $\forall x \, \cdot \, \varphi = \neg (\exists x \, \cdot \, \neg \, \varphi)$

< 一型

3

## FO logic - Semantics

- $\varphi$  FO logic formula,  $w \in A^{\omega}$
- first-order variables in  $\varphi$  represent *positions* in w
- $(w, free(\varphi))$ -assignment:  $\sigma : free(\varphi) \rightarrow \omega(= dom(w))$
- $i \in \omega$
- $\sigma[x \to i]$  :  $free(\varphi) \cup \{x\} \to \omega$ coincides with  $\sigma$  on  $free(\varphi) \setminus \{x\}$

## FO logic - Semantics

•  $(w, \sigma) \models \varphi$  by induction on the structure of  $\varphi$ :

•  $(w, \sigma) \models true$ 

• 
$$(w, \sigma) \models P_a(x)$$
 iff  $w(\sigma(x)) = a$ 

• 
$$(w, \sigma) \models x \le y$$
 iff  $\sigma(x) \le \sigma(y)$ 

• 
$$(w, \sigma) \models \neg \varphi$$
 iff  $(w, \sigma) \nvDash \varphi$ 

• 
$$(w,\sigma)\models \varphi\lor\psi$$
 iff  $(w,\sigma)\models\varphi$  or  $(w,\sigma)\models\psi$ 

•  $(w, \sigma) \models \exists x \cdot \varphi$  iff there exists  $i \in \omega$  such that  $(w, \sigma[x \to i]) \models \varphi$ 

3

For every  $a \in A$  we consider an atomic proposition  $p_a$ 

 $AP = \{p_a \mid a \in A\}$ 

#### Syntax

$$\varphi ::= true \mid p_a \mid \neg \varphi \mid \varphi \lor \varphi \mid \bigcirc \varphi \mid \varphi \cup \varphi$$

11 / 42

# Linear Temporal Logic (LTL) - Semantics

• Semantics  $w \in A^{\omega}$ 

 $w' = c^{30} b^{\omega} \not\models \Diamond p_a$ 

• 
$$w \models p_a$$
 iff  $w(0) = a$ 

• 
$$w \models \neg \varphi$$
 iff  $w \not\models \varphi$ 

• 
$$w \models \varphi \lor \psi$$
 iff  $w \models \varphi$  or  $w \models \psi$ 

• 
$$w \models \bigcirc \varphi$$
 iff  $w_{\geq 1} \models \varphi$ 

• 
$$w \models \varphi U \psi$$
 iff there exists  $i \ge 0$   
such that  $(w_{\ge i} \models \psi \text{ and } w_{\ge j} \models \varphi \text{ for every } 0 \le j < i)$ 

- Further formulas  $\Diamond \varphi := trueU\varphi$ ,  $\Box \varphi := \neg \Diamond \neg \varphi$
- Example:  $A = \{a, b, c\}, w = b^3 a^2 c^{\omega} \models p_b U p_a \quad (i = 3)$

 The class of star-free languages over A is the smallest family of languages over A which contains Ø, the singleton {a} for every a ∈ A, and it is closed under finite union, complement and concatenation.

- The class of star-free languages over A is the smallest family of languages over A which contains Ø, the singleton {a} for every a ∈ A, and it is closed under finite union, complement and concatenation.
- The class of ω-star-free languages over A is the closure of the empty set under the operations of union, complement and concatenation with star-free languages on the left.

- The class of star-free languages over A is the smallest family of languages over A which contains Ø, the singleton {a} for every a ∈ A, and it is closed under finite union, complement and concatenation.
- The class of ω-star-free languages over A is the closure of the empty set under the operations of union, complement and concatenation with star-free languages on the left.
- **Examples:** *A* = {*a*, *b*}

- The class of star-free languages over A is the smallest family of languages over A which contains Ø, the singleton {a} for every a ∈ A, and it is closed under finite union, complement and concatenation.
- The class of ω-star-free languages over A is the closure of the empty set under the operations of union, complement and concatenation with star-free languages on the left.
- **Examples:** *A* = {*a*, *b*}
  - A

- The class of star-free languages over A is the smallest family of languages over A which contains Ø, the singleton {a} for every a ∈ A, and it is closed under finite union, complement and concatenation.
- The class of ω-star-free languages over A is the closure of the empty set under the operations of union, complement and concatenation with star-free languages on the left.
- **Examples:** *A* = {*a*, *b*}
  - A
  - $A^*$  (complement of  $\emptyset$ )

- The class of star-free languages over A is the smallest family of languages over A which contains Ø, the singleton {a} for every a ∈ A, and it is closed under finite union, complement and concatenation.
- The class of ω-star-free languages over A is the closure of the empty set under the operations of union, complement and concatenation with star-free languages on the left.
- **Examples:** *A* = {*a*, *b*}
  - A
  - $A^*$  (complement of  $\emptyset$ )
  - $(ab)^*$  (complement of  $A^*aaA^* \cup A^*bbA^* \cup bA^* \cup A^*a$ )

- The class of star-free languages over A is the smallest family of languages over A which contains Ø, the singleton {a} for every a ∈ A, and it is closed under finite union, complement and concatenation.
- The class of ω-star-free languages over A is the closure of the empty set under the operations of union, complement and concatenation with star-free languages on the left.
- **Examples:** *A* = {*a*, *b*}
  - A
  - $A^*$  (complement of  $\emptyset$ )
  - $(ab)^*$  (complement of  $A^*aaA^* \cup A^*bbA^* \cup bA^* \cup A^*a$ )
  - $A^{\omega}$ ,  $(ab)^*A^{\omega}$

13 / 42

- The class of star-free languages over A is the smallest family of languages over A which contains Ø, the singleton {a} for every a ∈ A, and it is closed under finite union, complement and concatenation.
- The class of ω-star-free languages over A is the closure of the empty set under the operations of union, complement and concatenation with star-free languages on the left.
- **Examples:** *A* = {*a*, *b*}
  - A
  - $A^*$  (complement of  $\emptyset$ )
  - $(ab)^*$  (complement of  $A^*aaA^* \cup A^*bbA^* \cup bA^* \cup A^*a$ )
  - $A^{\omega}$ ,  $(ab)^*A^{\omega}$

#### • (*aa*)\* is **not** star-free

• A alphabet, 
$$L \subseteq A^*$$
 (resp.  $L \subseteq A^{\omega}$ )

- The following are equivalent:
  - L is definable in FO logic
  - L is definable in LTL
  - *L* is star-free (resp. *ω*-star-free)
  - L is accepted by a counter-free (resp. counter-free Büchi) automaton
- V. Diekert and P. Gastin, First-order definable languages (2007)

- $A = \{a, b, c\}$
- L the (finitary) language of words with at least one occurrence of a
- What about the *number of occurrences* of *a* in a word?
- w = bcabaca Number of a's: 3

Weighted automaton

# (*b*, 0), (*c*, 0) $q_0$ (a, 1)

## Semirings

- $(K, +, \cdot, 0, 1)$ : semiring (simply denoted by K)
  - $\bullet \ + \$  binary associative and commutative operation on K, neutral element 0

• 
$$k + (l + m) = (k + l) + m$$

• 
$$k+l = l+k$$

• 
$$k + 0 = k$$

•  $\cdot$  binary associative operation on K, neutral element 1

• 
$$k \cdot (l \cdot m) = (k \cdot l) \cdot m$$

- $k \cdot 1 = 1 \cdot k = 1$
- ullet  $\cdot$  distributes over +

• 
$$k \cdot (l+m) = k \cdot l + k \cdot m$$

• 
$$(k+l) \cdot m = k \cdot m + l \cdot m$$

•  $k \cdot 0 = 0 \cdot k = 0$ 

• K commutative if 
$$\cdot$$
 is commutative

• semiring K

idempotent

k+k=k

zero-divisor free

$$k \cdot k' = 0 \implies k = 0$$
 or  $k' = 0$ 

 $k, k' \in K$ .

< 一型

3

## Complete semirings

- K complete  $\sum_{I} : K^{I} \to K$  (I index set):
  - $\sum_{i\in \emptyset} k_i = 0$

• 
$$\sum_{i \in \{j\}} k_i = k_j$$

• 
$$\sum_{i \in \{j,l\}} k_i = k_j + k_l \quad j \neq l$$

• 
$$\sum_{j \in J} \sum_{i \in I_j} k_i = \sum_{i \in I} k_i$$
  $\bigcup_{j \in J} I_j = I$ ,  $I_j \cap I_{j'} = \emptyset$ 

• 
$$\sum_{i\in I}(k\cdot k_i) = k\cdot (\sum_{i\in I}k_i)$$

• 
$$\sum_{i\in I}(k_i\cdot k)=(\sum_{i\in I}k_i)\cdot k$$

- ∢ ⊢⊒ →

3

18 / 42

## Totally complete semirings

• *K* totally complete  $\prod_{i\geq 0}: K^i \to K$ :

• 
$$\prod_{i\geq 0} 1 = 1$$

• 
$$\prod_{i\geq 0} k_i = \prod_{i\geq 0} k'_i$$
  
 $k'_0 = k_0 \cdot \ldots \cdot k_{n_1}, k'_1 = k_{n_1+1} \cdot \ldots \cdot k_{n_2}, \ldots$   
•  $k_0 \cdot \prod_{i\geq 0} k_{i+1} = \prod_{i\geq 0} k_i$   
•  $\prod_{j\geq 1} \sum_{i\in I_i} k_i = \sum_{(i_1,i_2,\ldots)\in I_1 \times I_2 \times \ldots} \prod_{j\geq 1} k_{i_j}$ 

• 
$$k \neq 0 \implies \prod_{i \ge 0} k \neq 0$$

#### • K totally commutative complete

$$\prod_{i\geq 0} (k_i \cdot k'_i) = \left(\prod_{i\geq 0} k_i\right) \cdot \left(\prod_{i\geq 0} k'_i\right).$$

## Totally complete semirings

• K totally complete  $\prod_{i\geq 0}: K^i \to K$ :

• 
$$\prod_{i \ge 0} 1 = 1$$

• 
$$\prod_{i\geq 0} k_i = \prod_{i\geq 0} k'_i$$
  
 $k'_0 = k_0 \cdot \ldots \cdot k_{n_1}, k'_1 = k_{n_1+1} \cdot \ldots \cdot k_{n_2}, \ldots$   
•  $k_0 \cdot \prod_{i\geq 0} k_{i+1} = \prod_{i\geq 0} k_i$   
•  $\prod_{j\geq 1} \sum_{i\in I_j} k_i = \sum_{(i_1,i_2,\ldots)\in I_1 \times I_2 \times \ldots} \prod_{j\geq 1} k_{i_j}$   
•  $k \neq 0 \implies \prod_{i\geq 0} k \neq 0$ 

• K totally commutative complete

$$\prod_{i\geq 0} (k_i \cdot k'_i) = \left(\prod_{i\geq 0} k_i\right) \cdot \left(\prod_{i\geq 0} k'_i\right)$$

Idempotent, zero-divisor free totally commutative complete semirings

#### Examples

- the arctical semiring or max-plus semiring with  $+\infty$  $(\mathbb{R}_+ \cup \{\pm\infty\}, \max, +, -\infty, 0)$
- each complete chain, in particular the *fuzzy semiring*  $F = ([0, 1], \sup, \inf, 0, 1)$

21 / 42

# Weighted LTL over K - Syntax

• Atomic propositions:  $AP = \{p_a \mid a \in A\}$ .

#### Definition

Syntax of weighted LTL formulas

$$\varphi ::= k \mid p_a \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \bigcirc \varphi \mid \varphi U \varphi \mid \Box \varphi$$
$$k \in K, \ p_a \in AP.$$

• *LTL*(*K*, *A*) : weighted *LTL* formulas

•  $\varphi \in LTL(K, A)$  : *boolean* if it has no weights  $\neq 0, 1$ 

# Weighted LTL over A and K - Semantics

#### Definition

$$\begin{split} \varphi \in LTL(K, A), \text{ semantics } \|\varphi\| : A^{\omega} \to K, \ (w \in A^{\omega}) \\ \bullet \ (\|k\|, w) &= k, \\ \bullet \ (\|p_a\|, w) &= \begin{cases} 1 & \text{if } w(0) = a \\ 0 & \text{otherwise} \end{cases}, \\ \bullet \ (\|\neg \varphi\|, w) &= \begin{cases} 1 & \text{if } (\|\varphi\|, w) = 0 \\ 0 & \text{otherwise} \end{cases}, \\ \bullet \ (\|\varphi \lor \psi\|, w) &= (\|\varphi\|, w) + (\|\psi\|, w), \\ \bullet \ (\|\varphi \land \psi\|, w) &= (\|\varphi\|, w) \cdot (\|\psi\|, w), \\ \bullet \ (\|\varphi \cup \psi\|, w) &= (\|\varphi\|, w) \cdot (\|\psi\|, w), \\ \bullet \ (\|\varphi \cup \psi\|, w) &= (\|\varphi\|, w_{\geq 1}), \\ \bullet \ (\|\varphi \cup \psi\|, w) &= \sum_{i \geq 0} \left( \left( \prod_{0 \leq j < i} (\|\varphi\|, w_{\geq j}) \right) \cdot (\|\psi\|, w_{\geq i}) \right) \\ \bullet \ (\|\Box \varphi\|, w) &= \prod_{i \geq 0} (\|\varphi\|, w_{\geq i}). \end{split}$$

,

• almost boolean LTL formula:  $\varphi = \bigwedge_{1 \leq i \leq n} \varphi_i$ 

$$\varphi_i$$
 is boolean or  $\varphi_i = \bigvee_{a \in A} (k_a \wedge p_a)$ 

• *abLTL*(*K*, *A*) : almost boolean *LTL* formulas

# Weighted LTL over A and K - ULTL-fragment

#### Definition

ULTL(K, A) U-nesting LTL formulas:

•  $k \in ULTL(K, A)$  for every  $k \in K$ .

• 
$$abLTL(K, A) \subseteq ULTL(K, A).$$

- If  $\varphi \in ULTL(K, A)$ , then  $\neg \varphi \in ULTL(K, A)$ .
- If  $\varphi, \psi \in ULTL(K, A)$ , then  $\varphi \land \psi, \varphi \lor \psi \in ULTL(K, A)$ .
- If  $\varphi \in ULTL(K, A)$ , then  $\bigcirc \varphi \in ULTL(K, A)$ .
- If  $\varphi$  is boolean or  $\varphi = \bigvee_{a \in A} (k_a \wedge p_a)$ , then  $\Box \varphi \in ULTL(K, A)$ .
- If  $\varphi \in abLTL(K, A)$  and  $\psi \in ULTL(K, A)$ , then  $\varphi U \psi \in ULTL(K, A)$ .

3

- $r: A^{\omega} \to K$
- $\omega$ -ULTL-definable if  $r = \|\varphi\|$ ,  $\varphi \in ULTL(K, A)$
- $\omega$ -ULTL(K, A):  $\omega$ -ULTL-definable series

## Weighted FO logic over A and K - Syntax

#### Definition

Syntax of weighted FO logic formulas

$$\varphi ::= k \mid P_{\mathsf{a}}(x) \mid x \leq y \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x \, \centerdot \varphi \mid \forall x \, \centerdot \varphi$$

 $k \in K$ ,  $a \in A$ .

• FO(K, A): weighted FO logic formulas

• 
$$\varphi \in FO(K, A)$$
 : *boolean* if it has no weights  $\neq$  0, 1

3

# Weighted FO logic over A and K - Semantics

#### Definition

$$\varphi \in FO(K, A)$$
, semantics  $\|\varphi\| : (A \times \{0, 1\}^{free(\varphi)})^{\omega} \to K$ 

• 
$$(||k||, (w, \sigma)) = k$$
,  
•  $(||P_a(x)||, (w, \sigma)) = \begin{cases} 1 & \text{if } w(\sigma(x)) = a \\ 0 & \text{otherwise} \end{cases}$ ,  
•  $(||x \le y||, (w, \sigma)) = \begin{cases} 1 & \text{if } \sigma(x) \le \sigma(y) \\ 0 & \text{otherwise} \end{cases}$ ,  
•  $(||\neg \varphi||, (w, \sigma)) = \begin{cases} 1 & \text{if } (||\varphi||, (w, \sigma)) = 0 \\ 0 & \text{otherwise} \end{cases}$ ,  
•  $(||\varphi \lor \psi||, (w, \sigma)) = (||\varphi||, (w, \sigma)) + (||\psi||, (w, \sigma))$ ,  
•  $(||\varphi \land \psi||, (w, \sigma)) = (||\varphi||, (w, \sigma)) \cdot (||\psi||, (w, \sigma))$ ,

#### Definition (continued)

• 
$$(\|\exists x \cdot \varphi\|, (w, \sigma)) = \sum_{i \ge 0} (\|\varphi\|, (w, \sigma[x \to i])),$$
  
•  $(\|\forall x \cdot \varphi\|, (w, \sigma)) = \prod_{i \ge 0} (\|\varphi\|, (w, \sigma[x \to i])).$ 

# Weighted FO logic over A and K- WQFO-fragment

#### Definition

6

 $\varphi \in \mathit{FO}(\mathit{K},\mathit{A})\;\;\mathit{weakly quantified}$  if whenever  $\varphi$ 

contains a subformula of the form  $\forall x \, . \, \psi$ , then

•  $\psi$  is boolean formula, or

• 
$$\psi = igvee_{a \in A} \left( k_a \wedge P_a(x) 
ight)$$
 ,  $k_a \in K$  or

• 
$$\psi = y \leq x \rightarrow \bigvee_{a \in A} (k_a \wedge P_a(x)), \quad k_a \in K \text{ or }$$

• 
$$\psi = z \leq x < y \rightarrow \bigvee_{a \in A} (k_a \wedge P_a(x)), \quad k_a \in K$$

• 
$$s: A^{\omega} \to K \quad \omega$$
-wqFO-definable if  $s = \|\varphi\|$   
 $\varphi$  weakly quantified sentence

• 
$$\omega$$
-wqFO(K, A) :  $\omega$ -wqFO-definable series

#### Star-free series

• monomials:  $k_a a$ ,  $a \in A$ ,  $k_a \in K$ 

• letter-step series: 
$$s = \sum_{a \in A} k_a a$$
,

• complement 
$$\overline{s}$$
 of a series s:  $(\overline{s}, w) = \begin{cases} 1 & \text{if } (s, w) = 0 \\ 0 & \text{otherwise} \end{cases}$ 

• Hadamard product of series r and s :

$$(r \odot s, w) = (r, w) \cdot (s, w)$$

• Cauchy product of series r and s :

$$(r \cdot s, w) = \sum_{u,v \in A^*, w = uv} (r, u) \cdot (s, v)$$

• The *n*th-iteration  $r^n$   $(n \ge 0)$  of  $r: A^* \to K$ 

• 
$$r^0 = 1_{arepsilon}$$
 and  $r^{n+1} = r \cdot r^n$  for  $n \geq 0$ 

• 
$$(r^n, w) = \sum_{u_i \in A^*, w = u_1 \dots u_n} \left( \prod_{1 \le i \le n} (r, u_i) \right)$$

• 
$$r$$
 proper if  $(r, \varepsilon) = 0$ 

• iteration  $r^+$  of a proper series r:  $r^+ = \sum_{n>0} r^n$ 

32 / 42

۲

٥

• 
$$r: A^* \to K \quad s: A^\omega \to K$$

• Cauchy product of r and s :

$$(r \cdot s, w) = \sum_{u \in A^*, v \in A^\omega, w = uv} (r, u) \cdot (s, v)$$

•  $\omega$ -iteration of a proper finitary series  $r : r^{\omega} : A^{\omega} \to K$ 

 $(r^{\omega}, w) = \sum_{u_i \in A^*, w = u_1 u_2 \dots} \left( \prod_{i \ge 1} (r, u_i) \right)$ 

#### Definition

The class of *star-free series over* A and K, denoted by SF(K, A), is the least class of series containing the monomials (over A and K) and being closed under sum, Hadamard product, complement, Cauchy product, and iteration restricted to letter-step series.

#### Definition

The class of  $\omega$ -star-free series over A and K, denoted by  $\omega$ -SF(K, A), is the least class of infinitary series generated by the monomials (over A and K) by applying finitely many times the operations of sum, Hadamard product, complement, Cauchy product, iteration restricted to letter-step series, and  $\omega$ -iteration restricted to letter-step series.

34 / 42

## Weighted automata

- A weighted automaton over A and  $K : \mathcal{A} = (Q, in, wt, F)$  where
  - Q is the *finite state set*,
  - $in: Q \rightarrow K$  is the *initial distribution*,
  - $wt: Q \times A \times Q \rightarrow K$  assigns *weights* to the transitions,
  - $F \subseteq Q$  is the *final state set*.

• 
$$w=a_0\ldots a_{n-1}\in A^*$$
, a path:  $P_w:=((q_i,a_i,q_{i+1}))_{0\leq i\leq n-1}$ 

• running weight of P<sub>w</sub>

$$rwt(P_w) := \prod_{0 \le i \le n-1} wt((q_i, a_i, q_{i+1}))$$

weight of Pw

$$weight(P_w) := in(q_0) \cdot rwt(P_w)$$

- $P_w$  : successful if  $q_n \in F$
- behavior of  $\mathcal{A}$ :

 $\|\mathcal{A}\|: A^* \to K$ 

$$(\|\mathcal{A}\|, w) = \sum_{P_w \text{ succ}} weight(P_w).$$

э

## Weighted Büchi automata

• A weighted Büchi automaton  $\mathcal{A} = (\mathit{Q}, \mathit{in}, \mathit{wt}, \mathit{F})$ 

• 
$$w=a_0a_1\ldots\in A^{\omega}$$
, a path:  $P_w:=((q_i,a_i,q_{i+1}))_{i\geq 0}$ 

running weight of P<sub>w</sub>

$$\mathit{rwt}(\mathit{P}_w) := \prod_{i \ge 0} \mathit{wt}\left((\mathit{q}_i, \mathit{a}_i, \mathit{q}_{i+1})\right)$$

weight of  $P_w$ 

$$weight(P_w) := in(q_0) \cdot rwt(P_w)$$

•  $P_w$  : successful if  $q \in F$  occurs infinitely often along  $P_w$ 

• behavior of  $\mathcal{A}$ :  $\|\mathcal{A}\| : \mathcal{A}^{\omega} \to K$ 

$$(\|\mathcal{A}\|, w) = \sum_{P_w \text{ succ}} weight(P_w).$$

• 
$${\it P}_{(q,w,q)}$$
 a path of  ${\cal A}$  from  $q$  to  $q$  over  $w$ 

#### Definition

A weighted (resp. weighted Büchi) automaton  $\mathcal{A} = (Q, in, wt, F)$  is called *counter-free* if for every  $q \in Q$ ,  $w \in A^*$ , and  $n \ge 1$ , the relation

$$\sum_{P_{(q,w^n,q)}} rwt\left(P_{(q,w^n,q)}\right) \neq 0$$

#### implies

$$\sum_{P_{(q,w^n,q)}} rwt\left(P_{(q,w^n,q)}\right) = \left(\sum_{P_{(q,w,q)}} rwt\left(P_{(q,w,q)}\right)\right)^n.$$

- ∢ ⊢⊒ →

3

## Simple counter-free weighted automata

#### Definition

A counter-free weighted (resp. counter-free weighted Büchi) automaton  $\mathcal{A} = (Q, in, wt, F)$  over A and K is *simple* if for every  $q, q', p, p' \in Q$ , and  $a \in A$ ,

implies

$$in(q) = in(q'),$$

and

$$\textit{wt}((\textit{q},\textit{a},\textit{q}')) \neq 0 \neq \textit{wt}((\textit{p},\textit{a},\textit{p}'))$$

implies

$$wt((q, a, q')) = wt((p, a, p')).$$

#### Definition

A series  $r: A^{\omega} \to K$  is called *almost simple counter-free* if

$$r = \sum_{1 \leq i \leq n} \left( r_1^{(i)} \cdot \ldots \cdot r_{m_i}^{(i)} \right)$$

where, for every  $1 \le i \le n$ ,  $r_1^{(i)}, \ldots, r_{m_i-1}^{(i)}$  are accepted by simple counter-free weighted automata and  $r_{m_i}^{(i)}$  is accepted by a simple counter-free weighted Büchi automaton.

•  $\omega$ -asCF(K, A) : almost simple counter-free series

40 / 42

#### Theorem

#### $\omega\text{-ULTL}(K, A) = \omega\text{-wqFO}(K, A) = \omega\text{-SF}(K, A) = \omega\text{-asCF}(K, A).$

< 🗗 🕨

3

#### Theorem

 $\omega\text{-}\textit{ULTL}\left(\textit{K},\textit{A}\right) = \omega\text{-}\textit{wqFO}(\textit{K},\textit{A}) = \omega\text{-}\textit{scF}(\textit{K},\textit{A}) = \omega\text{-}\textit{scF}(\textit{K},\textit{A}).$ 

#### Proof.

We prove the inclusions:

$$\omega\text{-}ULTL(K, A) \subseteq \omega\text{-}wqFO(K, A) \subseteq \omega\text{-}SF(K, A)$$
$$\subseteq \omega\text{-}asCF(K, A) \subseteq \omega\text{-}ULTL(K, A).$$

-2

・ロト ・四ト ・ヨト ・ヨトー

#### Theorem

 $\omega\text{-}\textit{ULTL}\left(\textit{K},\textit{A}\right) = \omega\text{-}\textit{wqFO}(\textit{K},\textit{A}) = \omega\text{-}\textit{scF}(\textit{K},\textit{A}) = \omega\text{-}\textit{scF}(\textit{K},\textit{A}).$ 

#### Proof.

We prove the inclusions:

$$\omega - ULTL(K, A) \subseteq \omega - wqFO(K, A) \subseteq \omega - SF(K, A)$$
$$\subseteq \omega - asCF(K, A) \subseteq \omega - ULTL(K, A).$$

글 > - + 글 >

RISC, June 22, 2015

3

41 / 42

۲

• Can we relax the idempotency and/or the zero-divisor freeness property of the semiring?

42 / 42

- Can we relax the idempotency and/or the zero-divisor freeness property of the semiring?
- Develpoment of the theory in the probabilistic setup.

- Can we relax the idempotency and/or the zero-divisor freeness property of the semiring?
- Develpoment of the theory in the probabilistic setup.
- Development of the theory for more general structures than semirings, (e.g. valuation monoids).

- Can we relax the idempotency and/or the zero-divisor freeness property of the semiring?
- Develpoment of the theory in the probabilistic setup.
- Development of the theory for more general structures than semirings, (e.g. valuation monoids).

Thank you!