
On quantitative monadic �rst-order logic

George Rahonis

Department of Mathematics
Aristotle University of Thessaloniki, Greece

RISC Colloquium
June 22, 2015

Joint work with Eleni Mandrali

George Rahonis (University of Thessaloniki) On quantitative monadic �rst-order logic RISC, June 22, 2015 1 / 42



Outline

A fundamental result on language theory relating LTL-de�nability,
FO-logic-de�nability, star-freeness, counter-freeness

Over idempotent zero-divisor free totally commutative complete
semirings:

LTL

FO logic

(ω-)star-free series

Counter-free (Büchi) automata

The main result

Open problems - Future research
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Words

alphabet A : is a �nite set

A� = fεg [ fa0 . . . an�1 j a0, . . . , an�1 2 Ag �nite words over A

w = a0 . . . an�1, dom(w) = f0, 1, . . . , n� 1g

w = w(0) . . .w(n� 1)

Aω = fa0a1 . . . j a0, a1, . . . 2 Ag in�nite words over A

w = a0a1 . . . , dom(w) = ω(= N)

w = w(0)w(1) . . .

w�i = w(i)w(i + 1) . . . , (i � 0)
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Words - languages

L � A� (�nitary) language

L � Aω in�nitary language

Example

A = fa, b, cg

L the (�nitary) language of words with at least one occurrence of a
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Automaton

q0 q1

a, b, c

a

a, b, c

1



Words - languages

Example

A = fa, b, cg

L the (�nitary) language of words with at least one occurrence of a

Expression: A�aA�

Monadic �rst-order logic sentence: 9x .Pa(x)

Linear temporal logic (LTL) formula: �pa
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Büchi automata

A (nondeterministic) Büchi automaton

A = (Q,A, I ,∆,F )

Q: the �nite state set

A: the input alphabet

I � Q: the initial state set
∆ � Q � A�Q: the set of transitions
F � Q: the �nal state set

w = a0a1 . . . 2 Aω

path of A over w

Pw = (q0, a0, q1)(q1, a1, q2) . . . 2 ∆ω

Pw : successful if q 2 F occurs in�nitely often
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Counter-free automata

R. McNaughton and S. Papert (1971): (counter-free �nite automata)

V. Diekert and P. Gastin (2007):

Nondeterministic counter-free Büchi automaton A:

q 2 Q, w 2 A�, n � 1, if there is a path

q
w n�! q

then there is a path

q
w�! q
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FO logic - Syntax

Syntax

ϕ ::= true j Pa(x) j x � y j :ϕ j ϕ _ ϕ j 9x � ϕ

a 2 A, x , y �rst-order variables

false = :true

::ϕ = ϕ

ϕ ^ ψ = :(:ϕ _ :ψ)

8x � ϕ = :(9x �:ϕ)
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FO logic - Semantics

ϕ FO logic formula, w 2 Aω

�rst-order variables in ϕ represent positions in w

(w , free(ϕ))-assignment: σ : free(ϕ)! ω(= dom(w))

i 2 ω

σ[x ! i ] : free(ϕ) [ fxg ! ω

coincides with σ on free(ϕ) n fxg
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FO logic - Semantics

(w , σ) j= ϕ by induction on the structure of ϕ:

(w , σ) j= true

(w , σ) j= Pa(x) i¤ w(σ(x)) = a

(w , σ) j= x � y i¤ σ(x) � σ(y)

(w , σ) j= :ϕ i¤ (w , σ) 2 ϕ

(w , σ) j= ϕ _ ψ i¤ (w , σ) j= ϕ or (w , σ) j= ψ

(w , σ) j= 9x � ϕ i¤ there exists i 2 ω such that (w , σ[x ! i ]) j= ϕ
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Linear Temporal Logic (LTL) - Syntax

For every a 2 A we consider an atomic proposition pa

AP = fpa j a 2 Ag

Syntax

ϕ ::= true j pa j :ϕ j ϕ _ ϕ j ϕ j ϕUϕ

George Rahonis (University of Thessaloniki) On quantitative monadic �rst-order logic RISC, June 22, 2015 11 / 42



Linear Temporal Logic (LTL) - Semantics

Semantics w 2 Aω

w j= pa i¤ w(0) = a

w j= :ϕ i¤ w 6j= ϕ

w j= ϕ _ ψ i¤ w j= ϕ or w j= ψ

w j=ϕ i¤ w�1 j= ϕ

w j= ϕUψ i¤ there exists i � 0
such that (w�i j= ψ and w�j j= ϕ for every 0 � j < i)

Further formulas �ϕ := trueUϕ, �ϕ := :�:ϕ

Example: A = fa, b, cg, w = b3a2cω j= pbUpa (i = 3)

w 0 = c30bω 6j= �pa
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Star-free languages

The class of star-free languages over A is the smallest family of
languages over A which contains ∅, the singleton fag for every a 2 A,
and it is closed under �nite union, complement and concatenation.

The class of ω-star-free languages over A is the closure of the empty
set under the operations of union, complement and concatenation
with star-free languages on the left.

Examples: A = fa, bg

A

A� (complement of ∅)

(ab)� (complement of A�aaA� [ A�bbA� [ bA� [ A�a)
Aω, (ab)�Aω

(aa)� is not star-free
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A fundamental result

A alphabet, L � A� (resp. L � Aω)

The following are equivalent:

L is de�nable in FO logic

L is de�nable in LTL

L is star-free (resp. ω-star-free)

L is accepted by a counter-free (resp. counter-free Büchi) automaton

V. Diekert and P. Gastin, First-order de�nable languages (2007)
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Weights

Example

A = fa, b, cg

L the (�nitary) language of words with at least one occurrence of a

What about the number of occurrences of a in a word?

w = bcabaca Number of a�s: 3
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Weighted automaton

q0

(b, 0), (c, 0)

(a, 1)

1



Semirings

(K ,+, �, 0, 1): semiring (simply denoted by K )
+ binary associative and commutative operation on K , neutral
element 0

k + (l +m) = (k + l) +m

k + l = l + k

k + 0 = k

� binary associative operation on K , neutral element 1
k � (l �m) = (k � l) �m
k � 1 = 1 � k = 1

� distributes over +
k � (l +m) = k � l + k �m
(k + l) �m = k �m + l �m

k � 0 = 0 � k = 0

K commutative if � is commutative
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Semirings

semiring K

idempotent

k + k = k

zero-divisor free

k � k 0 = 0 =) k = 0 or k 0 = 0

k, k 0 2 K .
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Complete semirings

K complete ∑I : K I ! K (I index set):

∑i2∅ ki = 0

∑i2fjg ki = kj

∑i2fj ,lg ki = kj + kl j 6= l

∑j2J ∑i2Ij ki = ∑i2I ki
S
j2J Ij = I , Ij \ Ij 0 = ∅

∑i2I (k � ki ) = k � (∑i2I ki )

∑i2I (ki � k) = (∑i2I ki ) � k
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Totally complete semirings

K totally complete ∏i�0 : K i ! K :

∏i�0 1 = 1

∏i�0 ki = ∏i�0 k
0
i

k 00 = k0 � . . . � kn1 , k 01 = kn1+1 � . . . � kn2 , . . .

k0 �∏i�0 ki+1 = ∏i�0 ki

∏j�1 ∑i2Ij ki = ∑(i1,i2,...)2I1�I2�... ∏j�1 kij

k 6= 0 =) ∏i�0 k 6= 0

K totally commutative complete

∏
i�0

�
ki � k 0i

�
=

 
∏
i�0
ki

!
�
 

∏
i�0
k 0i

!
.

George Rahonis (University of Thessaloniki) On quantitative monadic �rst-order logic RISC, June 22, 2015 19 / 42



Totally complete semirings

K totally complete ∏i�0 : K i ! K :

∏i�0 1 = 1

∏i�0 ki = ∏i�0 k
0
i

k 00 = k0 � . . . � kn1 , k 01 = kn1+1 � . . . � kn2 , . . .

k0 �∏i�0 ki+1 = ∏i�0 ki

∏j�1 ∑i2Ij ki = ∑(i1,i2,...)2I1�I2�... ∏j�1 kij

k 6= 0 =) ∏i�0 k 6= 0

K totally commutative complete

∏
i�0

�
ki � k 0i

�
=

 
∏
i�0
ki

!
�
 

∏
i�0
k 0i

!
.

George Rahonis (University of Thessaloniki) On quantitative monadic �rst-order logic RISC, June 22, 2015 20 / 42

user
Oval



Idempotent, zero-divisor free totally commutative complete
semirings

Examples

the arctical semiring or max-plus semiring with +∞
(R+ [ f�∞g,max,+,�∞, 0)

each complete chain, in particular the fuzzy semiring
F = ([0, 1], sup, inf, 0, 1)
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Weighted LTL over K - Syntax

Atomic propositions: AP = fpa j a 2 Ag.

De�nition
Syntax of weighted LTL formulas

ϕ ::= k j pa j :ϕ j ϕ _ ϕ j ϕ ^ ϕ j ϕ j ϕUϕ j �ϕ

k 2 K , pa 2 AP.

LTL(K ,A) : weighted LTL formulas

ϕ 2 LTL(K ,A) : boolean if it has no weights 6= 0, 1
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Weighted LTL over A and K - Semantics

De�nition
ϕ 2 LTL(K ,A), semantics kϕk : Aω ! K , (w 2 Aω)

(kkk ,w) = k,

(kpak ,w) =
�
1 if w(0) = a
0 otherwise

,

(k:ϕk ,w) =
�
1 if (kϕk ,w) = 0
0 otherwise

,

(kϕ _ ψk ,w) = (kϕk ,w) + (kψk ,w) ,
(kϕ ^ ψk ,w) = (kϕk ,w) � (kψk ,w) ,
(kϕk ,w) = (kϕk ,w�1) ,

(kϕUψk ,w) = ∑
i�0

  
∏
0�j<i

(kϕk ,w�j )
!
� (kψk ,w�i )

!
,

(k�ϕk ,w) = ∏
i�0
(kϕk ,w�i ) .
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Weighted LTL over A and K - Some formulas

almost boolean LTL formula: ϕ =
V
1�i�n ϕi

ϕi is boolean or ϕi =
W
a2A (ka ^ pa)

abLTL (K ,A) : almost boolean LTL formulas
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Weighted LTL over A and K - ULTL-fragment

De�nition
ULTL (K ,A) U-nesting LTL formulas:

k 2 ULTL (K ,A) for every k 2 K .

abLTL (K ,A) � ULTL (K ,A).

If ϕ 2 ULTL (K ,A), then :ϕ 2 ULTL (K ,A).

If ϕ,ψ 2 ULTL (K ,A), then ϕ ^ ψ, ϕ _ ψ 2 ULTL (K ,A).

If ϕ 2 ULTL (K ,A), then ϕ 2 ULTL (K ,A).

If ϕ is boolean or ϕ =
W
a2A (ka ^ pa), then �ϕ 2 ULTL (K ,A).

If ϕ 2 abLTL (K ,A) and ψ 2 ULTL (K ,A), then
ϕUψ 2 ULTL (K ,A).
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Weighted LTL over A and K - ULTL-fragment

r : Aω ! K

ω-ULTL-de�nable if r = kϕk , ϕ 2 ULTL (K ,A)

ω-ULTL (K ,A) : ω-ULTL-de�nable series
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Weighted FO logic over A and K - Syntax

De�nition
Syntax of weighted FO logic formulas

ϕ ::= k j Pa(x) j x � y j :ϕ j ϕ _ ϕ j ϕ ^ ϕ j 9x � ϕ j 8x � ϕ

k 2 K , a 2 A.

FO(K ,A) : weighted FO logic formulas

ϕ 2 FO(K ,A) : boolean if it has no weights 6= 0, 1
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Weighted FO logic over A and K - Semantics

De�nition

ϕ 2 FO(K ,A), semantics kϕk :
�
A� f0, 1gfree(ϕ)

�ω
! K

(kkk , (w , σ)) = k,

(kPa(x)k , (w , σ)) =
�
1 if w(σ(x)) = a
0 otherwise

,

(kx � yk , (w , σ)) =
�
1 if σ(x) � σ(y)
0 otherwise

,

(k:ϕk , (w , σ)) =
�
1 if (kϕk , (w , σ)) = 0
0 otherwise

,

(kϕ _ ψk , (w , σ)) = (kϕk , (w , σ)) + (kψk , (w , σ)) ,

(kϕ ^ ψk , (w , σ)) = (kϕk , (w , σ)) � (kψk , (w , σ)) ,
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Weighted FO logic over A and K - Semantics

De�nition (continued)

(k9x � ϕk , (w , σ)) = ∑
i�0
(kϕk , (w , σ[x ! i ])) ,

(k8x � ϕk , (w , σ)) = ∏
i�0
(kϕk , (w , σ[x ! i ])) .

George Rahonis (University of Thessaloniki) On quantitative monadic �rst-order logic RISC, June 22, 2015 29 / 42



Weighted FO logic over A and K - WQFO-fragment

De�nition
ϕ 2 FO(K ,A) weakly quanti�ed if whenever ϕ

contains a subformula of the form 8x � ψ, then

ψ is boolean formula, or

ψ =
W
a2A (ka ^ Pa(x)) , ka 2 K or

ψ = y � x ! W
a2A (ka ^ Pa(x)), ka 2 K or

ψ = z � x < y ! W
a2A (ka ^ Pa(x)) , ka 2 K

s : Aω ! K ω-wqFO-de�nable if s = kϕk
ϕ weakly quanti�ed sentence

ω-wqFO(K ,A) : ω-wqFO-de�nable series
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Star-free series

monomials: kaa, a 2 A, ka 2 K

letter-step series: s = ∑a2A kaa,

complement s of a series s: (s,w) =
�
1 if (s,w) = 0
0 otherwise

Hadamard product of series r and s :

(r � s,w) = (r ,w) � (s,w)

Cauchy product of series r and s :

(r � s,w) = ∑
u,v2A�,w=uv

(r , u) � (s, v)
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Star-free series

The nth-iteration rn (n � 0) of r : A� ! K

r0 = 1ε and rn+1 = r � rn for n � 0

(rn,w) = ∑
ui2A�,w=u1 ...un

�
∏

1�i�n
(r , ui )

�

r proper if (r , ε) = 0

iteration r+ of a proper series r : r+ = ∑n>0 r
n
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Star-free series

r : A� ! K s : Aω ! K

Cauchy product of r and s :

(r � s,w) = ∑
u2A�,v2Aω,w=uv

(r , u) � (s, v)

ω-iteration of a proper �nitary series r : rω : Aω ! K

(rω,w) = ∑
ui2A�,w=u1u2 ...

 
∏
i�1
(r , ui )

!
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Star-free series and ω-star-free series

De�nition
The class of star-free series over A and K , denoted by SF (K ,A), is the
least class of series containing the monomials (over A and K ) and being
closed under sum, Hadamard product, complement, Cauchy product, and
iteration restricted to letter-step series.

De�nition
The class of ω-star-free series over A and K , denoted by ω-SF (K ,A), is
the least class of in�nitary series generated by the monomials (over A and
K ) by applying �nitely many times the operations of sum, Hadamard
product, complement, Cauchy product, iteration restricted to letter-step
series, and ω-iteration restricted to letter-step series.
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Weighted automata

A weighted automaton over A and K : A = (Q, in,wt,F ) where

Q is the �nite state set,

in : Q ! K is the initial distribution,

wt : Q � A�Q ! K assigns weights to the transitions,

F � Q is the �nal state set.

w = a0 . . . an�1 2 A�, a path: Pw := ((qi , ai , qi+1))0�i�n�1

running weight of Pw

rwt(Pw ) := ∏
0�i�n�1

wt ((qi , ai , qi+1))

weight of Pw

weight(Pw ) := in(q0) � rwt(Pw )
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Weighted automata

Pw : successful if qn 2 F

behavior of A:
kAk : A� ! K

(kAk ,w) = ∑
Pw succ

weight(Pw ).
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Weighted Büchi automata

A weighted Büchi automaton A = (Q, in,wt,F )

w = a0a1 . . . 2 Aω, a path: Pw := ((qi , ai , qi+1))i�0

running weight of Pw

rwt(Pw ) := ∏
i�0
wt ((qi , ai , qi+1))

weight of Pw
weight(Pw ) := in(q0) � rwt(Pw )

Pw : successful if q 2 F occurs in�nitely often along Pw

behavior of A: kAk : Aω ! K

(kAk ,w) = ∑
Pw succ

weight(Pw ).
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Counter-free weighted automata

P(q,w ,q) a path of A from q to q over w

De�nition
A weighted (resp. weighted Büchi) automaton A = (Q, in,wt,F ) is called
counter-free if for every q 2 Q, w 2 A�, and n � 1, the relation

∑
P(q,wn ,q)

rwt
�
P(q,w n ,q)

�
6= 0

implies

∑
P(q,wn ,q)

rwt
�
P(q,w n ,q)

�
=

0@ ∑
P(q,w ,q)

rwt
�
P(q,w ,q)

�1An

.
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Simple counter-free weighted automata

De�nition
A counter-free weighted (resp. counter-free weighted Büchi) automaton
A = (Q, in,wt,F ) over A and K is simple if for every q, q0, p, p0 2 Q, and
a 2 A,

in(q) 6= 0 6= in(q0)

implies

in(q) = in(q0),

and

wt((q, a, q0)) 6= 0 6= wt((p, a, p0))

implies

wt((q, a, q0)) = wt((p, a, p0)).
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Simple counter-free series

De�nition
A series r : Aω ! K is called almost simple counter-free if

r = ∑
1�i�n

�
r (i )1 � . . . � r (i )mi

�

where, for every 1 � i � n, r (i )1 , . . . , r (i )mi�1 are accepted by simple

counter-free weighted automata and r (i )mi is accepted by a simple
counter-free weighted Büchi automaton.

ω-asCF (K ,A) : almost simple counter-free series
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Main result

Theorem

ω-ULTL (K ,A) = ω-wqFO(K ,A) = ω-SF (K ,A) = ω-asCF (K ,A).

Proof.
We prove the inclusions:

ω-ULTL (K ,A) � ω-wqFO(K ,A) � ω-SF (K ,A)

� ω-asCF (K ,A) � ω-ULTL (K ,A) .
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Future research

Can we relax the idempotency and/or the zero-divisor freeness
property of the semiring?

Develpoment of the theory in the probabilistic setup.

Development of the theory for more general structures than semirings,
(e.g. valuation monoids).

Thank you!
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