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@ A fundamental result on language theory relating LTL-definability,
FO-logic-definability, star-freeness, counter-freeness

@ Over idempotent zero-divisor free totally commutative complete
semirings:

o LTL

e FO logic

(w-)star-free series

Counter-free (Biichi) automata

The main result

@ Open problems - Future research
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@ alphabet A : is a finite set

A*={e}U{ap...an-1 | a0, ..., ap—1 € A} finite words over A
e w=ay...a,-1, dom(w)={0,1,..., n—1}

o w=w(0)...w(n—1)

AY ={apay...| ap, a1, ... € A} infinite words over A

e w=aa ..., dom(w)=w(=N)
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Words - languages

L C A* (finitary) language
L C A¥ infinitary language

Example

e A={a b, c}

e L the (finitary) language of words with at least one occurrence of a
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Automaton

a, b, c

—>{ o



ds - languages

Example

e A={a b, c}

o L the (finitary) language of words with at least one occurrence of a

o Expression: A*aA*
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ds - languages

Example

e A={a b, c}

o L the (finitary) language of words with at least one occurrence of a

o Expression: A*aA*

e Monadic first-order logic sentence: Ix.P,(x)
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Words - languages

Example

A={a b, c}

o L the (finitary) language of words with at least one occurrence of a

Expression: A*aA*

Monadic first-order logic sentence: Ix.P,(x)

e Linear temporal logic (LTL) formula: $p,
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Biichi automata

@ A (nondeterministic) Biichi automaton
A= (QAIAF)

o @: the finite state set

e A: the input alphabet

o | C Q: the initial state set

o AC Q@ X AXx Q: the set of transitions
o F C Q: the final state set

@ w=gpa;... € AY
e path of A over w
Pw = (90,30, q1)(q1, a1, q2) ... € A

e P,,: successful if g € F occurs infinitely often
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Counter-free automata

@ R. McNaughton and S. Papert (1971): (counter-free finite automata)
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Counter-free automata

@ R. McNaughton and S. Papert (1971): (counter-free finite automata)

@ V. Diekert and P. Gastin (2007):
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Counter-free automata

@ R. McNaughton and S. Papert (1971): (counter-free finite automata)
o V. Diekert and P. Gastin (2007):

@ Nondeterministic counter-free Biichi automaton A:

George Rahonis (University of Thessaloniki)  On quantitative monadic first-order logic RISC, June 22, 2015 7/ 42



Counter-free automata

@ R. McNaughton and S. Papert (1971): (counter-free finite automata)
o V. Diekert and P. Gastin (2007):
e Nondeterministic counter-free Biichi automaton A:

e ge @, weA", n>1, if thereisa path

q—4q
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Counter-free automata

R. McNaughton and S. Papert (1971): (counter-free finite automata)

o V. Diekert and P. Gastin (2007):

@ Nondeterministic counter-free Biichi automaton A:

e geQ, weA*, n>1, ifthereisa path
q—q

@ then there is a path
9—q
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FO logic - Syntax

e Syntax
pu=true | P,(x) | x<y|—-@|eVe|Ix.@
a€ A, x,y first-order variables
e false = —true
[ ] —|—|q) e (p
° gAY = (g V p)

Vx.p = =(3x.—g)
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FO logic - Semantics

¢ FO logic formula, w € A¥

o first-order variables in @ represent positions in w
o (w, free(¢))-assignment: ¢ : free(¢) — w(= dom(w))

e/ Ew

o[x —i] : free(¢) U{x} — w
coincides with o on free(¢) \ {x}
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FO logic - Semantics

e (w,0) = ¢ by induction on the structure of ¢:

o (w,0) [ true

o (w,0) |E Pa(x) iff w(o(x))=a

(w,0) Ex <y iff o(x)<o(y)
(w,0) = —e iff (w,0)F ¢

(w,0) E oV iff (w,0)f=¢or(wo)fE=y

o (w,0) = 3Ix.¢ iff there exists i € w such that (w,o[x — i]) = ¢
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Linear Temporal Logic (LTL) - Syntax

For every a € A we consider an atomic proposition p,

AP = {p, | a € A}

Syntax

pu=true|p,| ~¢ | oVl Op| U
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Linear Temporal Logic (LTL) - Semantics

@ Semantics w ¢ AY
o wl=p, iff w(0)=a

o wl= g iff wite

wkEeVYy iff wiEgeorwlkEy

wik=Qe iff wsr=¢

w = Uy iff there exists i > 0
such that (w>; = ¢ and w~; |= ¢ for every 0 < j < /)

o Further formulas Q¢ := trueUgp, O¢ := -0
e Example: A= {a, b,c}, w=b3°c¥ = p,Up, (i=23)

w = 30pw l# <>Pa
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Star-free languages

@ The class of star-free languages over A is the smallest family of
languages over A which contains @, the singleton {a} for every a € A,
and it is closed under finite union, complement and concatenation.
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Star-free languages

@ The class of star-free languages over A is the smallest family of
languages over A which contains @, the singleton {a} for every a € A,
and it is closed under finite union, complement and concatenation.

@ The class of w-star-free languages over A is the closure of the empty
set under the operations of union, complement and concatenation
with star-free languages on the left.
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Star-free languages

@ The class of star-free languages over A is the smallest family of
languages over A which contains @, the singleton {a} for every a € A,
and it is closed under finite union, complement and concatenation.

@ The class of w-star-free languages over A is the closure of the empty
set under the operations of union, complement and concatenation
with star-free languages on the left.

e Examples: A = {a, b}

George Rahonis (University of Thessaloniki)  On quantitative monadic first-order logic RISC, June 22, 2015 13 / 42



Star-free languages

@ The class of star-free languages over A is the smallest family of
languages over A which contains @, the singleton {a} for every a € A,
and it is closed under finite union, complement and concatenation.

@ The class of w-star-free languages over A is the closure of the empty
set under the operations of union, complement and concatenation
with star-free languages on the left.

e Examples: A = {a, b}

o A
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Star-free languages

@ The class of star-free languages over A is the smallest family of
languages over A which contains @, the singleton {a} for every a € A,
and it is closed under finite union, complement and concatenation.

@ The class of w-star-free languages over A is the closure of the empty
set under the operations of union, complement and concatenation
with star-free languages on the left.

e Examples: A = {a, b}

o A

o A* (complement of @)
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Star-free languages

@ The class of star-free languages over A is the smallest family of
languages over A which contains @, the singleton {a} for every a € A,
and it is closed under finite union, complement and concatenation.

@ The class of w-star-free languages over A is the closure of the empty
set under the operations of union, complement and concatenation
with star-free languages on the left.

e Examples: A = {a, b}
o A

o A* (complement of @)
o (ab)* (complement of A*aaA* U A*bbA* U bA* U A*a)
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Star-free languages

@ The class of star-free languages over A is the smallest family of
languages over A which contains @, the singleton {a} for every a € A,
and it is closed under finite union, complement and concatenation.

@ The class of w-star-free languages over A is the closure of the empty
set under the operations of union, complement and concatenation
with star-free languages on the left.

e Examples: A = {a, b}

o A

A* (complement of @)
(ab)* (complement of A*aaA* U A*bbA* U bA* U A*a)
A¥,  (ab)*A¥
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Star-free languages

@ The class of star-free languages over A is the smallest family of
languages over A which contains @, the singleton {a} for every a € A,
and it is closed under finite union, complement and concatenation.

@ The class of w-star-free languages over A is the closure of the empty
set under the operations of union, complement and concatenation
with star-free languages on the left.

e Examples: A = {a, b}

o A

A* (complement of @)
(ab)* (complement of A*aaA* U A*bbA* U bA* U A*a)
A¥,  (ab)*A¥

@ (aa)* is not star-free
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A fundamental result

o A alphabet, L C A* (resp. L C A%)

@ The following are equivalent:

o L is definable in FO logic
L is definable in LTL

L is star-free (resp. w-star-free)

L is accepted by a counter-free (resp. counter-free Biichi) automaton

@ V. Diekert and P. Gastin, First-order definable languages (2007)
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Weights

Example

e A={a b, c}
o L the (finitary) language of words with at least one occurrence of a
@ What about the number of occurrences of a in a word?

@ w — bcabaca Number of a's: 3
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(b,0), (c,0)

(a, 1)



e (K,+,-,0,1): semiring (simply denoted by K)

e + binary associative and commutative operation on K, neutral
element 0

o k+(I+m)=(k+1)+m
o k+1=1+k
e k+0=k

e - binary associative operation on K, neutral element 1

o k-(I-my=(k-1)-m
e k-1=1-k=1

o - distributes over +

o k-(I+m)=k-I+k-m
o (k+/1) m=k-m+/-m

e k-0=0-k=0

@ K commutative if - is commutative
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Semirings

@ semiring K

@ idempotent

k+k=k

zero-divisor free

k-kK=0= k=0 ork'=0

k k' € K.
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Complete semirings

o K complete Y, :K'— K (I index set):

° Yicoki=0

° Yicjy ki =k

°o Yicynki=ki+k j#I

o YiesYienki=Yierki Ujesli=1 Nl =0
o Yici(k ki) =k-(LTics ki)

° Ziel(ki ) k) = (Ziel ki) -k
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Totally complete semirings

o K totally complete Tl;»o: K' — K:
o [[ix01=1
o [Tiso ki = I[Tiz0 k!
Ko =Ko oo ko KL = Koys1 oo ki,
o ko Ilizo0 kit1 = ITi>0 ki
o [Ij>1 Xiel ki = X(i.ip,.. el xhx.. [j>1 ki

° k7é0 — H,‘Zok#o

e K totally commutative complete

T4 - (ITx) - (IT4).

i>0 i>0 i>0
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Totally complete semirings

o K totally complete Tl;»o: K' — K:
o [[ix01=1
o [Tiso ki = I[Tiz0 k!
Ko =Ko oo ko KL = Koys1 oo ki,
o ko Ilizo0 kit1 = ITi>0 ki
o [Ij>1 Xiel ki = X(i.ip,.. el xhx.. [j>1 ki

" Mot 7

e K totally commutative complete

T4 - (ITx) - (IT4).

i>0 i>0 i>0
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Idempotent, zero-divisor free totally commutative complete

semirings

Examples

e the arctical semiring or max-plus semiring with +o0
(R4 U {£oo}, max, +, —00,0)

@ each complete chain, in particular the fuzzy semiring
F = ([0, 1], sup,inf,0,1)
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Weighted LTL over K - Syntax

e Atomic propositions: AP = {p, | a € A}.

Syntax of weighted LTL formulas

pu=k|ps|~ploVelpAe|O¢l|eUe|Ogp
k€K, p, € AP.

o LTL(K,A) : weighted LTL formulas

e ¢ € LTL(K, A) : boolean if it has no weights # 0, 1
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Weighted LTL over A and K - Semantics

(Definition |

¢ € LTL(K, A), semantics ||¢|| : AY — K, (w € AY)
(&Il w) = &,

o (||pa]l W)= {
o (I~¢ll . w) :{ Lt (ol w) =

1 ifw(0)=a
0 otherwise

otherwise
o (lovyll,w)=(lell.w)+ (¢l w),
o (lonyll,w)=(llell.w)- (Pl w).
° (|O9ll.w) = (lloll wz1).
o (luyll, w Z((H (gl ws; >~<||¢||,WE,->),
o (IT91w) =TT (gl wes).
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Weighted LTL over A and K - Some formulas

@ almost boolean LTL formula: ¢ = N\1<j<, @;
@, is boolean or @, = \/,ca (ka A pa)

@ abLTL(K,A) : almost boolean LTL formulas
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Weighted LTL over A and K - ULTL-fragment

ULTL (K, A) U-nesting LTL formulas:
e k€ ULTL(K, A) for every k € K.

o abLTL(K,A) C ULTL(K,A).

o If g € ULTL (K, A), then ¢ € ULTL (K, A).

o If g, € ULTL (K, A), then ¢ A th, ¢V ¢p € ULTL (K, A).

o If g € ULTL(K, A), then Og € ULTL (K, A).

o If ¢ is boolean or ¢ = \/,c4 (ka A ps), then O € ULTL (K, A).

o If p € abLTL(K,A) and p € ULTL (K, A), then
pUy € ULTL (K, A).
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Weighted LTL over A and K - ULTL-fragment

o r:AY =K
o w-ULTL-definable if r=|¢l|, ¢ € ULTL(K,A)

o w-ULTL(K,A): w-ULTL-definable series
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Weighted FO logic over A and K - Syntax

Syntax of weighted FO logic formulas

pu=k|P(x)[x<y|-¢|loVe|oAe|Ix.¢|Vx.@

ke K, aeA

e FO(K,A): weighted FO logic formulas

e ¢ € FO(K,A) : boolean if it has no weights # 0, 1
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Weighted FO logic over A and K - Semantics

¢ € FO(K,A), semantics |¢| : (A x {0, 1}”“(4’))“] — K

o (&I, (w, o)) = k,
if wio(x)) =a '

otherwise

o =

o (PGl (w,0))

I
o = A

1 ifo(x) <o(y)
0 otherwise

i (gl (w.0)) =0

otherwise

° (Ix <yl (w,0))

o (I~¢ll (w.0)) ={

° (levyll, (w,a)) = (el (w,0) + (¢l (w,0)),
° (lenwll,(w,a)) = (gl (w, ) - (¢l (w,0)),
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Weighted FO logic over A and K - Semantics

Definition (continued)

° ([I3x-oll( =2 (ol (w,olx = i)),

i>0

° ([¥x.gl . ( =TT el (w.olx—i)).

i>0
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Weighted FO logic over A and K- WQFO-fragment

¢ € FO(K,A) weakly quantified if whenever ¢

contains a subformula of the form Vx.1, then

@ 1 is boolean formula, or
° lp:VaeA(ka/\Pa(X)), kaE K or
°l)[]:.ySX_)\/aeA(ka/\Pa(X)). k, € K or

o p=z<x<y—V,ealkaNPs(x)), ki€ K

o s: AY —» K w-wqFO-definable if s = ||¢||
@ weakly quantified sentence

o w-wqFO(K,A) : w-wqFO-definable series
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Star-free series

@ monomials: k;a, a€ A, k,eK

letter-step series: s =) ,ca kaa,

1 if(s,w)=0

@ complement s of a seriess: (5, w) = :
P ( ) { 0 otherwise

@ Hadamard product of series r and s :

(ros,w) = (rw)-(s,w)

Cauchy product of series r and s :

(r-s,w)= Z (rou)-(s,v)

u,vEA* w=uv
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Star-free series

The nth-iteration r” (n > 0) of r: A* = K

er%=1, and r"tl=r.-r" forn>0

(mw)= ¥ N(H(r,u,-))

u€EA*, w=uj...u 1<i<n
e r properif (r,e) =0

e iteration r of a proper seriesr: rT =Y, or"
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Star-free series

or:A*— K s:AY - K

@ Cauchy product of r and s :

(r-s,w) = ) (r,u)-(s,v)

uUEA* VEAY w=uv

@ w-iteration of a proper finitary series r : rY AY — K

(rv w) = Z H(r up)

u;€EA* w=uiup... \i>1
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Star-free series and w-star-free series

Definition

The class of star-free series over A and K, denoted by SF(K, A), is the
least class of series containing the monomials (over A and K) and being
closed under sum, Hadamard product, complement, Cauchy product, and
iteration restricted to letter-step series.

Definition

The class of w-star-free series over A and K, denoted by aJ—SF(K, A), is
the least class of infinitary series generated by the monomials (over A and
K) by applying finitely many times the operations of sum, Hadamard
product, complement, Cauchy product, iteration restricted to letter-step
series, and w-iteration restricted to letter-step series.
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Weighted automata

@ A weighted automaton over A and K : A = (Q, in, wt, F) where

o @ is the finite state set,
e in: Q — K is the initial distribution,
o wt: Q@ X AX Q — K assigns weights to the transitions,

o F C Q is the final state set.

© w=ay...a,-1 € A", a path: Py = ((qi, 3/, 9i+1) )g<jcn_1

@ running weight of P,

wt(Py):= ] wt((gi aiqi11))

0<i<n-—-1

weight of P,
weight(P,,) := in(qo) - rwt(Py)
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Weighted automata

e P, : successtul if g, € F

@ behavior of A:
I|A] : A* — K

(Il w) =} weight(P.).

P,, succ
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Weighted Biichi automata

o A weighted Biichi automaton A = (Q, in, wt, F)
o w=aa... €AY, apath: P, := ((qi, a;, q,-+1)),-20

@ running weight of P,

wit(Py) == [ [wt ((gi a5, gi41))
i>0

weight of P,
weight(Py) := in(qo) - rwt(Py)

e P, : successful if g € F occurs infinitely often along P,
e behavior of A: ||A|l : AY — K
(Al w) = Z weight(Py,).

P,, succ
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Counter-free weighted automata

° P a path of A from g to g over w

q.w.q)

A weighted (resp. weighted Biichi) automaton A = (Q, in, wt, F) is called
counter-free if for every g € Q, w € A*, and n > 1, the relation

Z rwt (P(q’wn’q)> #0

Pq.wn.q)

implies

Z rwt (P(qlwn’q)) = Z rwt (P(q,w,q))

Pqwn.q) Pgw,q)
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Simple counter-free weighted automata

A counter-free weighted (resp. counter-free weighted Biichi) automaton

A= (Q,in, wt, F) over A and K is simple if for every q,q', p, p' € Q, and
acA,

in(q) # 0 # in(q")

implies
in(q) = in(q"),
and
wt((q,2,q')) # 0 # wt((p, a p'))
implies

wt((q,a,q")) = wt((p,a p')).
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Simple counter-free series

A series r : AY — K is called almost simple counter-free if

r= Y (A7)

1<i<n

where, for every 1 </ < n, rl(i), cees r,gi)_l are accepted by simple
(i)

counter-free weighted automata and ry,/ is accepted by a simple
counter-free weighted Biichi automaton.

@ w-asCF(K,A) : almost simple counter-free series
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Main result

w-ULTL (K, A) = w-wgFO(K, A) = w-SF(K, A) = w-asCF (K, A).
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Main result

w-ULTL (K, A) = w-wgFO(K, A) = w-SF(K, A) = w-asCF (K, A).

We prove the inclusions:

w-ULTL (K, A) C w-wgFO(K, A) C w-SF(K, A)
C w-asCF(K,A) C w-ULTL (K, A).
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Future research

e Can we relax the idempotency and/or the zero-divisor freeness
property of the semiring?

@ Develpoment of the theory in the probabilistic setup.

@ Development of the theory for more general structures than semirings,
(e.g. valuation monoids).

Thank you!
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