326.041 (2015S) - Practical Software Technology
 (Praktische Softwaretechnologie) Graphs, Weighted Graphs, Shortest Path

Alexander Baumgartner Alexander.Baumgartner@risc.jku.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

The 7 bridges of Königsberg I

Is there a way to walk across all bridges without recrossing any of them? Leonhard Euler solved the problem in 1735 by transforming it into a graph.

The 7 bridges of Königsberg II

Euler observed that:

- During any walk in the graph, the number of times one enters a non-terminal vertex equals the number of times one leaves it.
- It follows that, for each land mass (except for the ones chosen for the start and finish), the number of bridges touching that land mass must be even.

Graph - Basic Notions I

- A graph $G=(V, E)$ is a set V of vertices and a collection E of pairs of vertices from V, called edges.
- A way of representing connections or relationships between pairs of objects from some set V.
- A path is a sequence of edges.
- A graph is said to be connected if there is at least one path from every vertex to every other vertex.

Graphs - Basic Notions II

- Edges in a graph $G=(V, E)$ are either directed or undirected.
- A directed edge from u to v is an ordered pair (u, v) with $u, v \in V$.
- An undirected edge between u and v is a set $\{u, v\}$ with $u, v \in V$.
- In weighted graphs, edges are given a weight number. E.g.:
- The physical distance between two vertices.
- The time it takes to get from one vertex to another.
- How much it costs to travel from vertex to vertex.

Formally it is modeled by a weight function $w: E \rightarrow \mathbb{R}$.

Figure: An undirected weighted graph.

Data Structures for Graphs I

- An edge list is an unordered list of all edges.
- In an adjacency list, we additionally maintain, for each vertex, a separate list containing those edges that are incident to the vertex.

Data Structures for Graphs II

- An adjacency map is similar to an adjacency list, with the adjacent vertices serving as the keys.

Data Structures for Graphs III

- An adjacency matrix maintains an $n \times n$ matrix, for a graph with n vertices.

	$\begin{array}{lllll}0 & 1 & 2 & 3\end{array}$			
$u \longrightarrow 0$		e	g	
$\rightarrow 1$	e		f	
$w \longrightarrow 2$	g	f		h
$\longrightarrow 3$			h	

Generic Adjacency Map Graph I

```
public class AdjacencyMapGraph<V, E> {
    private boolean directed;
    private List<Vertex> vertices = new LinkedList < < ();
    private List<Edge> edges = new LinkedList <> ();
    public class Edge {
    private E elem; // Weight, name,...
    private Vertex u, v;
    public class Vertex {
        private V elem;
        private Map<Vertex, Edge> outgoing, incoming;
        public Vertex(V elem) {
            outgoing = new HashMap<>();
            if (AdjacencyMapGraph.this directed)
            incoming = new HashMap <>();
            else
                        incoming = outgoing;
            this.elem = elem; }
```


Generic Adjacency Map Graph II

```
public class AdjacencyMapGraph<V, E> {
    public Edge getEdge(Vertex u, Vertex v) {
    return u.getOutgoing().get(v); }
    public Vertex insertVertex(V elem) {
    Vertex v = new Vertex(elem);
    vertices.add(v);
    return v; }
public Edge insertEdge(Vertex u, Vertex v, E elem) {
    assert getEdge(u, v) = null; // Already exists
    Edge e = new Edge(u, v, elem);
    edges.add(e);
    u.getOutgoing().put(v, e);
    v.getIncoming().put(u, e);
    return e;
}
```


Graph Traversal - Motivation

- Visits all the vertices and edges in time proportional to their number (linear time).
- E.g., given an undirected graph G, traversal is needed to compute:
- A path from one vertex u to another vertex v.
- The minimal paths from a given a vertex v to all the other vertices.
- Whether G is connected.
- A spanning tree of G, if G is connected.
- The connected components of G.
- Identifying cycles in G.
- E.g., given a directed graph G, traversal is needed to compute:
- A directed path from one vertex u to another vertex v.
- All the vertices of G that are reachable from a given vertex v.
- Whether G is acyclic.
- Whether G is strongly connected.
- The strongly connected components of G.

Graph Traversal - Depth-First Search

Depth-first search traversal starting at a vertex v :
Input: A graph G and a vertex v of G.
Output: All vertices reachable from v, with their discovery edges.
Algorithm $\operatorname{DFS}(G, v)$:

- Mark vertex v as visited.
- for each of v 's outgoing edges, $e=(v, u)$ do
- if vertex u has not been visited then
- Record edge e as the discovery edge for vertex u.
- Recursively call $\operatorname{DFS}(G, u)$.

Traversal yields a depth-first search tree rooted at a starting vertex v.

Graph Traversal - Depth-First Example

Depth-First Graph Traversal in Java

- Given a start vertex v of a graph G.
- Store all reachable vertices in Set $\langle V$ ertex $>$.
- For each vertex, store discovery edge in Map<Vertex, Edge>.

public class AdjacencyMapGraph $<$ V, E> \{

public void depthFirst(Vertex v, Set<Vertex> known, Map<Vertex, Edge> forest) \{ known.add(v);
for (Edge e : v.getOutgoing().values()) \{
Vertex u = e.opposite(v);
if (!known.contains(u)) \{
forest.put(u, e);
depthFirst(u, known, forest);
\}
$\}$
\}

Construct Path from Discovery Edge Map

- Given two vertices u, v and the map of discovery edges.
- Return the path from u to v as list of edges.

Construct Path from Discovery Edge Map

- Given two vertices u, v and the map of discovery edges.
- Return the path from u to v as list of edges.

```
public class AdjacencyMapGraph<V, E> {
public List<Edge> constructPath(Vertex u, Vertex v,
                    Map<Vertex, Edge> forest) {
    LinkedList<Edge> path = new LinkedList <> ();
    if (forest.get(v) != null) {
        while (v != u) {
            Edge edge = forest.get(v);
            path.addFirst(edge);
            v = edge.opposite(v);
        }
    }
    return path;
}
```


Connected Components

- Test whether a graph is (weakly) connected:

Call depthFirst(v, known, forrest) with an arbitrary vertex v and then test whether known.size ()$==$ vertices.size () .

- Compute all (weakly) connected components:

```
public class AdjacencyMapGraph<V, E> {
public Map<Vertex, Edge> depthFirstComplete() {
    Set<Vertex> known = new HashSet <>();
    Map<Vertex, Edge> forest = new HashMap<>();
    for (Vertex u : vertices())
        if (!known.contains(u))
        depthFirst(u, known, forest);
    return forest;
}
```

- Which vertices are in which component?
- Use unique ID to mark vertices: depthFirst(u, known, forest, uid).

Graph Traversal - Breadth-First Search

"Sending out explorers, in all directions, who collectively traverse a graph." Breadth-first search starts at a vertex v, which is at level 0 .

Input: A graph G and a vertex v of G.
Output: All vertices reachable from v, with their discovery edges.
Algorithm $B F S(G, v)$:

- Mark vertex v as visited.
- Put v into an empty FIFO queue Q.
- while Q is not empty
- Poll the next vertex u from Q.
- for each of u 's outgoing edges, $e=(u, w)$ do
- if vertex w has not been visited then
- Record edge e as the discovery edge for vertex w.
- Mark vertex w as visited.
- Put w into the queue Q.

Traversal yields a breath-first search tree rooted at a starting vertex v.

Graph Traversal - Breadth-First Example

0

Graph Traversal - Breadth-First Example

Breadth-First Graph Traversal in Java

- Given a start vertex v of a graph G.
- Store all reachable vertices in Set \langle Vertex $>$.
- For each vertex, store discovery edge in Map $<$ Vertex, Edge $>$.

```
public void breathFirst(Vertex v, Set<Vertex> known,
                        Map<Vertex, Edge> forest) {
    Queue<Vertex> q = new LinkedList <> ();
    known.add(v); q.add(v);
    while (!q.isEmpty()) {
        v = q.poll();
    for (Edge e : v.getOutgoing().values()) {
        Vertex u = e.opposite(v);
        if (!known.contains(u)) {
        forest.put(u, e);
        known.add(u); q.add(u);
        }
    }
    }
}
```


Properties of Breadth-First Search

- Searching for connected components is the same as for depth first search.
- We can use the method constructPath(...) from before.
- The method constructPath(...) returns a shortest path for breath first search.

Weighted Graphs

In weighted graphs, edges are given a weight number. E.g.:

- The physical distance between two vertices.
- The time it takes to get from one vertex to another.
- How much it costs to travel from vertex to vertex. Formally it is modeled by a weight function $w: E \rightarrow \mathbb{R}$.

Figure: An undirected weighted graph.

Using our Generic Implementation

```
AdjacencyMapGraph<Character, Integer> g
    = new AdjacencyMapGraph <>(false);
Vertex a = g.insertVertex('A');
Vertex b = g.insertVertex('B');
Vertex c = g.insertVertex('C');
Vertex d = g.insertVertex('D');
g.insertEdge(a, b, 6);
g.insertEdge(a, d, 4);
g.insertEdge(b, c, 10);
```


Edsger W. Dijkstra

- Shortest path algorithm, known as Dijkstra's algorithm (1959).
- Shunting yard algorithm for parsing mathematical expressions.

Figure: Edsger Wybe Dijkstra in 2002

- Given a weighted graph $G=(V, E)$ and a start vertex $s \in V$.
- Find the cheapest way to travel from s to all the other Vertices.

Shortest Path Algorithm

- Given a start vertex $s \in V$ of weighted graph $G=(V, E)$ with nonnegative edge weights $w(u, v)$ for $u, v \in V$.
- Find the length of a shortest path from s to v for each vertex $v \in V$.

Algorithm ShortestPath (G, s) :

- Initialize a distance map D such that $s \mapsto 0$ and $v \mapsto \infty$ for $s \neq v \in V$. By $D[v]$ we denote the value associated to v.
- Let a priority queue Q contain all the mappings $v \mapsto k \in D$ where k denotes the priority. Smaller number has higher priority.
- while Q is not empty do
- $u=Q$. remove ().key ()
- for each outgoing edge (u, v) such that v is in Q do
- if $D[u]+w(u, v)<D[v]$ then
- $D[v]=D[u]+w(u, v)$
- Change the key of vertex v in Q to $D[v]$.
- return D.

Shortest Path Algorithm - Result

- Given a start vertex $s \in V$ of weighted graph $G=(V, E)$ with nonnegative edge weights $w(u, v)$ for $u, v \in V$ and a distance map D.
- For any vertex v which is not reachable from s we get $D[v]=\infty$.
- Obviously this solves the reachability problem.
- For any vertex v which is reachable from s we have $D[v]$ containing the length of the shortest path.
- The shortest path to a vertex v can be red off:
- Take all the incoming edges (u, v) and follow the edge where $D(u)$ is minimal.

Shortest Path in Maze

- We assume that 'S' stands for start and 'E' for end.
- Use an undirected graph to solve maze problem.
- No weights are needed.
- We can use breath first search.

```
public class MazeShortest {
    private int width, height;
    private AdjacencyMapGraph<Character, Integer > graph
        = new AdjacencyMapGraph <>(false);
    private Vertex start, end;
```


Creating the Maze Graph

```
for (; in.hasNextLine(); height++) {
    char[] line = in.nextLine().toCharArray();
    for (int i = 0; i < line.length; i++, u = v) {
        v = graph.insertVertex(line[i]);
        if (v.getElem() = '#')
        continue;
            if (i > 0 && u.getElem() != '#')
        graph.insertEdge(u, v);
        int above =graph.vertices().size()-line.length - 1;
        if (above > 0 &&
            graph.vertices().get(above).getElem()!= '#')
        graph.insertEdge(graph.vertices().get(above),v);
            if (v.getElem() = 'S') start = v;
        else if (v.getElem() = 'E') end = v;
        }
}
width = graph.vertices().size() / height;
```


Solving the Maze Graph

- Use the breath first search to obtain map of discovery edges.
- Construct the path from the map of discovery edges.

```
public boolean solve() {
    Set <...Vertex> known = new HashSet<>();
    Map<...Vertex, ...Edge> forest = new HashMap<>();
    graph.breathFirst(start, known, forest);
    List <...Edge> path
        = graph.constructPath(start, end, forest);
    for (int i = 1, n = path.size() - 1; i < n; i++) {
        path.get(i).getVertU().setElem('.');
        path.get(i).getVertV().setElem('.');
    }
    return !path.isEmpty();
}
```


Exercise

- A graph $G=(V, E)$ is bipartite if V can be partitioned into two sets $X \subseteq V$ and $Y=V \backslash X$ such that every edge in G has one end vertex in X and the other in Y.
- Design an algorithm for determining if an undirected graph G is bipartite.

See the guidance for this exercise on the Moodle page.

