
326.041 (2015S) – Practical Software Technology
(Praktische Softwaretechnologie)

Graphs, Weighted Graphs, Shortest Path

Alexander Baumgartner
Alexander.Baumgartner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

The 7 bridges of Königsberg I Graphs

Is there a way to walk across all bridges without recrossing any of them?
Leonhard Euler solved the problem in 1735 by transforming it into a graph.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

The 7 bridges of Königsberg II Graphs

Euler observed that:

During any walk in the graph, the number of times one enters a
non-terminal vertex equals the number of times one leaves it.

It follows that, for each land mass (except for the ones chosen for the
start and finish), the number of bridges touching that land mass must
be even.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph – Basic Notions I Graphs

A graph G = (V,E) is a set V of vertices and a collection E of
pairs of vertices from V , called edges.
A way of representing connections or relationships between pairs of
objects from some set V .
A path is a sequence of edges.
A graph is said to be connected if there is at least one path from
every vertex to every other vertex.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graphs – Basic Notions II Graphs

Edges in a graph G = (V,E) are either directed or undirected.
A directed edge from u to v is an ordered pair (u, v) with u, v ∈ V .
An undirected edge between u and v is a set {u, v} with u, v ∈ V .

In weighted graphs, edges are given a weight number. E.g.:
The physical distance between two vertices.
The time it takes to get from one vertex to another.
How much it costs to travel from vertex to vertex.

Formally it is modeled by a weight function w : E → R.

Figure: An undirected weighted graph.
Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Data Structures for Graphs I Graphs

An edge list is an unordered list of all edges.

In an adjacency list, we additionally maintain, for each vertex, a
separate list containing those edges that are incident to the vertex.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Data Structures for Graphs II Graphs

An adjacency map is similar to an adjacency list, with the adjacent
vertices serving as the keys.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Data Structures for Graphs III Graphs

An adjacency matrix maintains an n× n matrix, for a graph with n
vertices.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Generic Adjacency Map Graph I Graphs

1 p u b l i c c l a s s AdjacencyMapGraph<V, E> {
2 p r i v a t e boolean d i r e c t e d ;
3 p r i v a t e L i s t<Vertex> v e r t i c e s = new L i n k edL i s t <>() ;
4 p r i v a t e L i s t<Edge> edges = new L i n k edL i s t <>() ;
5 . . .
6 p u b l i c c l a s s Edge {
7 p r i v a t e E elem ; // Weight , name , . . .
8 p r i v a t e Ver tex u , v ;
9 . . .

10 p u b l i c c l a s s Ver tex {
11 p r i v a t e V elem ;
12 p r i v a t e Map<Vertex , Edge> outgo ing , incoming ;
13 p u b l i c Ver tex (V elem) {
14 outgo ing = new HashMap<>() ;
15 i f (AdjacencyMapGraph.this.directed)
16 incoming = new HashMap<>() ;
17 e l s e
18 incoming = outgo ing ;
19 t h i s . e lem = elem ; }
20 . . .

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Generic Adjacency Map Graph II Graphs

1 p u b l i c c l a s s AdjacencyMapGraph<V, E> {
2 . . .
3 p u b l i c Edge getEdge (Ver t ex u , Ve r t ex v) {
4 r e t u r n u . getOutgo ing () . ge t (v) ; }
5 p u b l i c Ver tex i n s e r t V e r t e x (V elem) {
6 Ver tex v = new Ver tex (elem) ;
7 v e r t i c e s . add (v) ;
8 r e t u r n v ; }
9 p u b l i c Edge i n s e r t Ed g e (Ver t ex u , Ve r t ex v , E elem) {

10 a s s e r t getEdge (u , v) == n u l l ; // A l r eady e x i s t s
11 Edge e = new Edge (u , v , e lem) ;
12 edges . add (e) ;
13 u . getOutgo ing () . put (v , e) ;
14 v . ge t Incoming () . put (u , e) ;
15 r e t u r n e ;
16 }
17 . . .

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Motivation Graphs

Visits all the vertices and edges in time proportional to their number
(linear time).

E.g., given an undirected graph G, traversal is needed to compute:

A path from one vertex u to another vertex v.
The minimal paths from a given a vertex v to all the other vertices.
Whether G is connected.
A spanning tree of G, if G is connected.
The connected components of G.
Identifying cycles in G.

E.g., given a directed graph G, traversal is needed to compute:

A directed path from one vertex u to another vertex v.
All the vertices of G that are reachable from a given vertex v.
Whether G is acyclic.
Whether G is strongly connected.
The strongly connected components of G.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Depth-First Search Graphs

Depth-first search traversal starting at a vertex v:

Input: A graph G and a vertex v of G.
Output: All vertices reachable from v, with their discovery edges.

Algorithm DFS(G, v):

Mark vertex v as visited.
for each of v’s outgoing edges, e = (v, u) do

if vertex u has not been visited then
Record edge e as the discovery edge for vertex u.
Recursively call DFS(G, u).

Traversal yields a depth-first search tree rooted at a starting vertex v.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Depth-First Example Graphs

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Depth-First Example Graphs

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Depth-First Example Graphs

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Depth-First Example Graphs

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Depth-First Example Graphs

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Depth-First Example Graphs

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Depth-First Example Graphs

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Depth-First Graph Traversal in Java Graphs

Given a start vertex v of a graph G.

Store all reachable vertices in Set<V ertex>.

For each vertex, store discovery edge in Map<V ertex, Edge>.

1 p u b l i c c l a s s AdjacencyMapGraph<V, E> {
2 . . .
3 p u b l i c vo id d e p t h F i r s t (Ve r t ex v , Set<Vertex> known ,
4 Map<Vertex , Edge> f o r e s t) {
5 known . add (v) ;
6 f o r (Edge e : v . getOutgo ing () . v a l u e s ()) {
7 Ver t ex u = e . o ppo s i t e (v) ;
8 i f (! known . c o n t a i n s (u)) {
9 f o r e s t . put (u , e) ;

10 d e p t h F i r s t (u , known , f o r e s t) ;
11 }
12 }
13 }
14 . . .

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Construct Path from Discovery Edge Map Graphs

Given two vertices u, v and the map of discovery edges.

Return the path from u to v as list of edges.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Construct Path from Discovery Edge Map Graphs

Given two vertices u, v and the map of discovery edges.

Return the path from u to v as list of edges.

1 p u b l i c c l a s s AdjacencyMapGraph<V, E> {
2 . . .
3 p u b l i c L i s t<Edge> con s t r u c tPa th (Ver t ex u , Ve r t ex v ,
4 Map<Vertex , Edge> f o r e s t) {
5 L i n k edL i s t<Edge> path = new L i n k edL i s t <>() ;
6 i f (f o r e s t . ge t (v) != n u l l) {
7 whi le (v != u) {
8 Edge edge = f o r e s t . ge t (v) ;
9 path . a d dF i r s t (edge) ;

10 v = edge . o ppo s i t e (v) ;
11 }
12 }
13 r e t u r n path ;
14 }
15 . . .

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Connected Components Graphs

Test whether a graph is (weakly) connected:
Call depthF irst(v, known, forrest) with an arbitrary vertex v and
then test whether known.size() == vertices.size().
Compute all (weakly) connected components:

1 p u b l i c c l a s s AdjacencyMapGraph<V, E> {
2 . . .
3 p u b l i c Map<Vertex , Edge> dep thF i r s tComp l e t e () {
4 Set<Vertex> known = new HashSet<>() ;
5 Map<Vertex , Edge> f o r e s t = new HashMap<>() ;
6 f o r (Ve r t ex u : v e r t i c e s ())
7 i f (! known . c o n t a i n s (u))
8 d e p t h F i r s t (u , known , f o r e s t) ;
9 r e t u r n f o r e s t ;

10 }
11 . . .

Which vertices are in which component?
Use unique ID to mark vertices: depthF irst(u, known, forest, uid).

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Breadth-First Search Graphs

“Sending out explorers, in all directions, who collectively traverse a graph.”
Breadth-first search starts at a vertex v, which is at level 0.

Input: A graph G and a vertex v of G.
Output: All vertices reachable from v, with their discovery edges.

Algorithm BFS(G, v):

Mark vertex v as visited.
Put v into an empty FIFO queue Q.
while Q is not empty

Poll the next vertex u from Q.
for each of u’s outgoing edges, e = (u,w) do

if vertex w has not been visited then
Record edge e as the discovery edge for vertex w.
Mark vertex w as visited.
Put w into the queue Q.

Traversal yields a breath-first search tree rooted at a starting vertex v.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Breadth-First Example Graphs

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Breadth-First Example Graphs

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Breadth-First Example Graphs

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Breadth-First Example Graphs

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Breadth-First Example Graphs

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Graph Traversal – Breadth-First Example Graphs

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Breadth-First Graph Traversal in Java Graphs

Given a start vertex v of a graph G.

Store all reachable vertices in Set<V ertex>.

For each vertex, store discovery edge in Map<V ertex, Edge>.

1 p u b l i c vo id b r e a t h F i r s t (Ve r t ex v , Set<Vertex> known ,
2 Map<Vertex , Edge> f o r e s t) {
3 Queue<Vertex> q = new L i n k edL i s t <>() ;
4 known . add (v) ; q . add (v) ;
5 whi le (! q . i sEmpty ()) {
6 v = q . p o l l () ;
7 f o r (Edge e : v . getOutgo ing () . v a l u e s ()) {
8 Ver t ex u = e . o ppo s i t e (v) ;
9 i f (! known . c o n t a i n s (u)) {

10 f o r e s t . put (u , e) ;
11 known . add (u) ; q . add (u) ;
12 }
13 }
14 }
15 }

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Properties of Breadth-First Search Graphs

Searching for connected components is the same as for depth first
search.

We can use the method constructPath(...) from before.

The method constructPath(...) returns a shortest path for breath
first search.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Weighted Graphs Weighted Graphs

In weighted graphs, edges are given a weight number. E.g.:

The physical distance between two vertices.

The time it takes to get from one vertex to another.

How much it costs to travel from vertex to vertex.

Formally it is modeled by a weight function w : E → R.

Figure: An undirected weighted graph.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Using our Generic Implementation Weighted Graphs

1 AdjacencyMapGraph<Charac te r , I n t e g e r> g
2 = new AdjacencyMapGraph<>(f a l s e) ;
3 Ve r t ex a = g . i n s e r t V e r t e x (’A ’) ;
4 Ve r t ex b = g . i n s e r t V e r t e x (’B ’) ;
5 Ve r t ex c = g . i n s e r t V e r t e x (’C ’) ;
6 Ve r t ex d = g . i n s e r t V e r t e x (’D ’) ;
7 g . i n s e r t Ed g e (a , b , 6) ;
8 g . i n s e r t Ed g e (a , d , 4) ;
9 g . i n s e r t Ed g e (b , c , 10) ;

10 . . .

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Edsger W. Dijkstra Weighted Graphs

Shortest path algorithm, known as Dijkstra’s algorithm (1959).
Shunting yard algorithm for parsing mathematical expressions.

Figure: Edsger Wybe Dijkstra in 2002

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Find “Best” Path Weighted Graphs

Given a weighted graph G = (V,E) and a start vertex s ∈ V .

Find the cheapest way to travel from s to all the other Vertices.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Shortest Path Algorithm Weighted Graphs

Given a start vertex s ∈ V of weighted graph G = (V,E) with
nonnegative edge weights w(u, v) for u, v ∈ V .

Find the length of a shortest path from s to v for each vertex v ∈ V .

Algorithm ShortestPath(G, s):

Initialize a distance map D such that s 7→ 0 and v 7→ ∞ for s 6= v ∈ V .
By D[v] we denote the value associated to v.
Let a priority queue Q contain all the mappings v 7→ k ∈ D where k
denotes the priority. Smaller number has higher priority.
while Q is not empty do

u = Q.remove().key()
for each outgoing edge (u, v) such that v is in Q do

if D[u] + w(u, v) < D[v] then
D[v] = D[u] + w(u, v)
Change the key of vertex v in Q to D[v].

return D.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Shortest Path Algorithm – Result Weighted Graphs

Given a start vertex s ∈ V of weighted graph G = (V,E) with
nonnegative edge weights w(u, v) for u, v ∈ V and a distance map D.

For any vertex v which is not reachable from s we get D[v] =∞.

Obviously this solves the reachability problem.

For any vertex v which is reachable from s we have D[v] containing
the length of the shortest path.

The shortest path to a vertex v can be red off:
Take all the incoming edges (u, v) and follow the edge where D(u) is
minimal.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Shortest Path in Maze Maze Solving

We assume that ’S’ stands for start and ’E’ for end.

Use an undirected graph to solve maze problem.

No weights are needed.

We can use breath first search.

1 p u b l i c c l a s s MazeShortes t {
2 p r i v a t e i n t width , h e i g h t ;
3 p r i v a t e AdjacencyMapGraph<Charac te r , I n t e g e r> graph
4 = new AdjacencyMapGraph<>(f a l s e) ;
5 p r i v a t e Ver tex s t a r t , end ;

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Creating the Maze Graph Maze Solving

1 f o r (; i n . hasNextL ine () ; h e i g h t++) {
2 char [] l i n e = i n . n e x tL i n e () . toCharAr ray () ;
3 f o r (i n t i = 0 ; i < l i n e . l e n g t h ; i ++, u = v) {
4 v = graph . i n s e r t V e r t e x (l i n e [i]) ;
5 i f (v . getElem () == ’#’)
6 cont inue ;
7
8 i f (i > 0 && u . getElem () != ’#’)
9 graph . i n s e r t Ed g e (u , v) ;

10 i n t above =graph . v e r t i c e s () . s i z e ()− l i n e . l eng th −1;
11 i f (above > 0 &&
12 graph . v e r t i c e s () . ge t (above) . getElem () != ’#’)
13 graph . i n s e r t Ed g e (graph . v e r t i c e s () . ge t (above) , v) ;
14
15 i f (v . getElem () == ’S ’) s t a r t = v ;
16 e l s e i f (v . getElem () == ’E ’) end = v ;
17 }
18 }
19 width = graph . v e r t i c e s () . s i z e () / h e i g h t ;

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Solving the Maze Graph Maze Solving

Use the breath first search to obtain map of discovery edges.

Construct the path from the map of discovery edges.

1 p u b l i c boolean s o l v e () {
2 Set < . . . Vertex> known = new HashSet<>() ;
3 Map< . . . Vertex , . . . Edge> f o r e s t = new HashMap<>() ;
4 graph . b r e a t h F i r s t (s t a r t , known , f o r e s t) ;
5 L i s t < . . . Edge> path
6 = graph . c on s t r u c tPa th (s t a r t , end , f o r e s t) ;
7 f o r (i n t i = 1 , n = path . s i z e () − 1 ; i < n ; i++) {
8 path . ge t (i) . getVertU () . se tE lem (’ . ’) ;
9 path . ge t (i) . getVertV () . se tE lem (’ . ’) ;

10 }
11 r e t u r n ! path . i sEmpty () ;
12 }

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Exercise

A graph G = (V,E) is bipartite if V can be partitioned into two sets
X ⊆ V and Y = V \X such that every edge in G has one end vertex
in X and the other in Y .

Design an algorithm for determining if an undirected graph G is
bipartite.

See the guidance for this exercise on the Moodle page.

Graphs, Weighted Graphs, Shortest Path – Practical Software Technology Alexander.Baumgartner@risc.jku.at

	Graphs
	Weighted Graphs
	Maze Solving

