
326.041 (2015S) – Practical Software Technology
(Praktische Softwaretechnologie)

Binary Search Trees, Red-Black Trees

Alexander Baumgartner
Alexander.Baumgartner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Tree: Nodes and Edges Trees

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Definition Trees

A tree T is a set of nodes storing elements such that the nodes have
a parent-child relationship that satisfies the following properties:

If T is nonempty, it has a special node, called the root of T , that has
no parent.
Each node v of T different from the root has a unique parent node w;
every node with parent w is a child of w.

A tree can be empty.

A node without children is a leaf.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Basic Notions Trees

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Binary Trees Trees

A tree where every node has at most two children is a binary tree.

Children are called the left child and the right child.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Binary Search Trees Binary Search Trees

A node’s left child must have a key less than its parent.

A node’s right child must have a key greater or equal to its parent.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Node.java – Generic ImplementationBinary Search Trees

1 pub l i c c l a s s Node<E extends Comparable<E>>
2 implements Comparable<Node<E>> {
3 E data ;
4 Node<E> l e f t C h i l d ;
5 Node<E> r i g h t C h i l d ;
6
7 pub l i c i n t compareTo (Node<E> o) {
8 i f (data == nu l l)
9 re tu rn o . data == nu l l ? 0 : −1;

10 re tu rn o . data==nu l l ? 1 : data . compareTo (o . data) ;
11 }
12 }

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Finding a Node Binary Search Trees

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Tree.java – Finding a Node Binary Search Trees

1 pub l i c c l a s s Tree<E extends Comparable<E>> {
2 Node<E> r o o t ;
3 . . .
4
5 pub l i c Node<E> f i n d (E data) {
6 Node<E> cu r = roo t ;
7 whi le (cu r != nu l l && data . e qu a l s (cu r . getData ())) {
8 i f (cu r . getData () . compareTo (data) > 0)
9 cu r = cur . l e f t C h i l d ;

10 e l s e
11 cur = cur . r i g h t C h i l d ;
12 }
13 re tu rn cu r ;
14 }
15 }

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Inserting a Node Binary Search Trees

Find an appropriate position to insert a node as leaf:

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Tree.java – Inserting a Node Binary Search Trees

1 pub l i c vo id i n s e r t (E data) {
2 Node<E> newNode = new Node<>(data) ;
3 i f (r oo t == nu l l) {
4 r oo t = newNode ;
5 re tu rn ;
6 }
7 f o r (Node<E> c u r r e n t = roo t ; c u r r e n t != nu l l ;) {
8 Node<E> pa r en t = cu r r e n t ;
9 i f (c u r r e n t . compareTo (newNode) > 0) {

10 c u r r e n t = cu r r e n t . l e f t C h i l d ;
11 i f (c u r r e n t == nu l l)
12 pa r en t . l e f t C h i l d = newNode ;
13 } e l s e {
14 c u r r e n t = cu r r e n t . r i g h t C h i l d ;
15 i f (c u r r e n t == nu l l)
16 pa r en t . r i g h t C h i l d = newNode ;
17 }
18 }
19 }

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Find Minimum / Maximum Binary Search Trees

Follow the left / right child as long as possible.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Tree.java – Finding the Minimum Binary Search Trees

1 pub l i c Node<E> minimum () {
2 Node<E> l a s t = nu l l ;
3 f o r (Node<E> n = roo t ; n != nu l l ; n = n . l e f t C h i l d)
4 l a s t = n ;
5 re tu rn l a s t ;
6 }

Maximum is similar.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Traversing the Tree: Depth-First Binary Search Trees

Depth-first-traversal:

Preorder:
Visit the node,
Traverse the nodes left subtree,
Traverse the nodes right subtree.

Inorder:
Traverse the nodes left subtree,
Visit the node,
Traverse the nodes right subtree.

Postorder:
Traverse the nodes left subtree,
Traverse the nodes right subtree,
Visit the node.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Tree.java – Inorder Traversal I Binary Search Trees

1 // Inner class has a c c e s s to the type v a r i a b l e
2 pub l i c abs t rac t c l a s s V i s i t o r {
3 pub l i c abs t rac t vo id v i s i t (Node<E> node) ;
4 }
5
6 pub l i c vo id i nOrde r (V i s i t o r v i s i t o r) {
7 i nOrde r (root , v i s i t o r) ;
8 }
9

10 p r i v a t e vo id i nOrde r (Node<E> cu r r en t , V i s i t o r v i s i t o r) {
11 i f (c u r r e n t == nu l l)
12 re tu rn ;
13 i nOrde r (c u r r e n t . l e f t C h i l d , v i s i t o r) ;
14 v i s i t o r . v i s i t (c u r r e n t) ;
15 i nOrde r (c u r r e n t . r i g h t C h i l d , v i s i t o r) ;
16 }

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Tree.java – Inorder Traversal II Binary Search Trees

1 pub l i c c l a s s Tree<E extends Comparable<E>> {
2 . . .
3 // I n n e r c l a s s has a c c e s s to the type v a r i a b l e
4 pub l i c abs t rac t c l a s s V i s i t o r {
5 pub l i c abs t rac t vo id v i s i t (Node<E> node) ;
6 }

1 Tree<Integer> t = new Tree<>() ;
2 t . i n s e r t (5) ;
3 t . i n s e r t (11) ;
4 . . .
5
6 f i n a l S t r i n gB u i l d e r sb = new S t r i n gB u i l d e r () ;
7 t . i nOrde r (t.new V i s i t o r () {
8 pub l i c vo id v i s i t (Node<Integer> node) {
9 sb . append (node . getData ()) . append (’ ’) ;

10 }
11 }) ;
12 System . out . p r i n t l n (sb . t o S t r i n g ()) ;

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Traversing the Tree: Breadth-First Binary Search Trees

Breadth-first-traversal:

Levelorder:
Use a Queue to go through the tree level-by-level.

1 Start with the root node and visit it (Level 0).
2 Visit the left child, unless it is null.

Put it into the Queue.

3 Visit the right child, unless it is null.

Put it into the Queue.

4 Poll the next node from the Queue and go to 2.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Tree.java – Levelorder Traversal Binary Search Trees

1 pub l i c vo id l e v e l O r d e r (V i s i t o r v i s i t o r) {
2 Queue<Node<E>> queue = new ArrayDeque<>() ;
3 queue . add (r oo t) ;
4 whi le (! queue . i sEmpty ()) {
5 Node<E> c u r r e n t = queue . p o l l () ;
6 v i s i t o r . v i s i t (c u r r e n t) ;
7 i f (c u r r e n t . l e f t C h i l d != nu l l)
8 queue . add (c u r r e n t . l e f t C h i l d) ;
9 i f (c u r r e n t . r i g h t C h i l d != nu l l)

10 queue . add (c u r r e n t . r i g h t C h i l d) ;
11 }
12 }

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Deleting a Node I Binary Search Trees

Three cases:

The node to be deleted is a leaf.

The node to be deleted has one child.

The node to be deleted has two children.

The first case is trivial.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Deleting a Node II Binary Search Trees

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Deleting a Node III Binary Search Trees

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Deleting a Node IV Binary Search Trees

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Tree.java – Finding the Successor Binary Search Trees

1 p r i v a t e Node<E> g e tSu c c e s s o r (Node<E> delNode) {
2 Node<E> s u c c e s s o rPa r e n t = delNode ;
3 Node<E> s u c c e s s o r = delNode ;
4 // go to r i g h t c h i l d
5 f o r (Node<E> n = delNode . r i g h t C h i l d ; n != nu l l ;) {
6 s u c c e s s o rPa r e n t = s u c c e s s o r ;
7 s u c c e s s o r = n ;
8 n = n . l e f t C h i l d ;
9 }

10 i f (s u c c e s s o r != delNode . r i g h t C h i l d) {
11 s u c c e s s o rPa r e n t . l e f t C h i l d = s u c c e s s o r . r i g h t C h i l d ;
12 s u c c e s s o r . r i g h t C h i l d = delNode . r i g h t C h i l d ;
13 }
14 re tu rn s u c c e s s o r ;
15 }

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Tree.java – Deleting a Node Binary Search Trees

1 pub l i c c l a s s Tree<E extends Comparable<E>> {
2 . . .
3 /∗∗
4 ∗ Returns t r u e i n ca se o f s u c c e s s and f a l s e
5 ∗ i f the g i v en node was not found .
6 ∗/
7 pub l i c boolean d e l e t e (E node) {
8 see Exercise 8
9 }

10 p r i v a t e Node<E> g e tSu c c e s s o r (Node<E> delNode) {
11 . . .
12 }

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Out of Balance? Binary Search Trees

If the binary tree is balanced,
find, insert, delete needs O(log n) time.

What happens if the values to
be inserted are already ordered?

Binary trees might become
unbalanced over time.

The ability to quickly find, insert,
delete a given element is lost.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Solution: Red-Black Trees Red-Black Trees

A red-black tree is a binary search tree with colored nodes.

It uses O(1) structural changes after an update to stay balanced.

The height of a red-black tree storing n entries is O(log n).
1 Every node is either red or black.
2 The root is always black.
3 If a node is red, its children must be black.
4 Every path from the root to a “null child”, must contain the same

number of black nodes.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Keeping the Balance Red-Black Trees

The rules ensure that the height is bound by O(log n).

1 Every node is either red or black.

2 The root is always black.

3 If a node is red, its children must be black.

4 Every path from the root to a “null child”, must contain the same
number of black nodes.

To keep this rules intact:

You can change the colors of nodes.

You can perform rotations. Rotations must do two things at once:

Raise some nodes and lower others to help balance the tree.
Ensure that the characteristics of a binary search tree are not violated.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Example: Change the Color Red-Black Trees

To insert a node 12, the colors need to be changed:

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Example: Rotations are Required Red-Black Trees

The node 6, cannot be inserted without rotations:

Solution: Rotate right such that 25 is the new root.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Rotations Red-Black Trees

One node is chosen as the “top” of the rotation.
If we’re doing a right rotation, this “top” node will move down and to
the right, into the position of its right child.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Rotations Red-Black Trees

One node is chosen as the “top” of the rotation.
If we’re doing a right rotation, this “top” node will move down and to
the right, into the position of its right child.

Inorder traversal yields the same result!

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Inserting a Node Red-Black Trees

1 pub l i c c l a s s Node<E extends Comparable<E>>
2 implements Comparable<Node<E>> {
3 boolean b l a ck ;
4 . . .
5 }

On the way down to the insertion point:

If the current node is black and its two children are both red then:
1 Color the children black. Color the current red, unless it is the root.
2 Check that there are no violations of Rule 3 (Children of red must be

black).
3 If so, perform the appropriate rotations. (At most 2 are needed.)

When you reach a leaf node, insert the new node with color red.

Check again for red-red conflicts, and perform any necessary rotations.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Advantages Red-Black Trees

The space complexity is O(n), where n is the size of the input.

The tree-height is bound by O(log n).

Searching is done in O(log n) for the worst case time.

Insertion is done in O(log n) for the worst case time.

Deletion is done in O(log n) for the worst case time.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Deleting a Node Red-Black Trees

It can be done in O(log n) time, but:

If deletion is not performed frequently, then a “deleted flag” can be
used to increase the performance.

Store a boolean value for each node and mark it as deleted instead
of recoloring nodes and rotating the tree.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Other Examples for Trees Trees

Of course, not every tree is a search tree.
Trees can be used for data compression (Huffman-Tree).
Trees can be used to represent algebraic expression.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Exercise

Implement the delete method for the binary tree.

Use the method getSuccessor to find the successor like discussed
during the lecture.

1 pub l i c c l a s s Tree<E extends Comparable<E>> {
2 . . .
3 /∗∗
4 ∗ Returns t r u e i n ca se o f s u c c e s s and f a l s e
5 ∗ i f the g i v en node was not found .
6 ∗/
7 pub l i c boolean d e l e t e (E node) {
8 // TODO: Implement t h i s a l g o r i t hm .
9 }

10 p r i v a t e Node<E> g e tSu c c e s s o r (Node<E> delNode) {
11 . . .
12 }

See the guidance for this exercise on the Moodle page.

Binary Search Trees, Red-Black Trees – Practical Software Technology Alexander.Baumgartner@risc.jku.at

	Trees
	Binary Search Trees
	Red-Black Trees
	Trees

