N2

326.041 (2015S) — Practical Software Technology

(Praktische Softwaretechnologie)
Binary Search Trees, Red-Black Trees

Alexander Baumgartner
Alexander.Baumgartner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Tree: Nodes and Edges S gé

Nodes

Edges |

) )

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



7\

Definition '

o A tree T is a set of nodes storing elements such that the nodes have
a parent-child relationship that satisfies the following properties:

o If T is nonempty, it has a special node, called the root of T, that has
no parent.

o Each node v of T different from the root has a unique parent node w;
every node with parent w is a child of w.

@ A tree can be empty.

@ A node without children is a leaf.

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Basic Notions Trees g?

The dashed <«— Level 0
b line is a path

~

B is the
7~ parent of D .
Dis the B and E C ) <«— Level 1
left child \ E s the
of B / right child
~ of B
D <— Level 2

<«— Level 3

4
) A subtree ’
with F as ’
its root

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



2N\,

Binary Trees Trees .

o A tree where every node has at most two children is a binary tree.
o Children are called the left child and the right child.

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



. 7Y
Blnary SearCh Trees Binary Search Trees .E E'.

@ A node's left child must have a key less than its parent.
@ A node's right child must have a key greater or equal to its parent.

53

34) 47) 79

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Node.java — Generic Implementation

public class Node<E extends Comparable<E>>

implements Comparable<Node<E>> {
E data;

Node<E> leftChild;
Node<E> rightChild ;

public int compareTo(Node<E> o) {
if (data = null)
return o.data — null ? 0 : —1;
return o.data—null 7 1

data.compareTo(o.data);

Binary Search Trees, Red-Black Trees — Practical Software Technology

Alexander.Baumgartner@risc.jku.at



F|nd|ng a Node Binary Search Trees g.y

o )\
80
57 > 27 y
57>51

\

57 < 58

9 DD .
/

57 == 57
57 64)

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Tree.java — Finding a Node

public class Tree<E extends Comparable<E>> {
Node<E> root;

public Node<E> find (E data) {

Node<E> cur = root;
while (cur !=null && data.equals(cur.getData())){

getData().compareTo(data) > 0)

if (cur.
cur = cur.leftChild;
else
cur = cur.rightChild;

}

return cur;

Alexander.Baumgartner@risc.jku.at

Binary Search Trees, Red-Black Trees — Practical Software Technology



. 7"
|nsel’tlng a Node Binary Search Trees '%.J('

Find an appropriate position to insert a node as leaf:

6@) 6@)
e

/ \ / N\
s 9 3 B

null

a5)

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Tree.java — Inserting a Node 87

public void insert(E data) {
Node<E> newNode = new Node<>(data);

if (root = null) {
root = newNode;
return;

}

for (Node<E> current = root; current != null;) {
Node<E> parent = current;
if (current.compareTo(newNode) > 0) {
current = current.leftChild;
if (current = null)
parent.leftChild = newNode;
} else {
current = current.rightChild;
if (current = null)
parent.rightChild = newNode;

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



. .. . ﬁ'
Find Minimum / Maximum Binary Search Trees N

Follow the left / right child as long as possible.

/
. 2

Minimum / \

63

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Tree.java — Finding the Minimum

A%

public Node<E> minimum() {

Node<E> last = null;

for (Node<E> n = root; n I=
last = n;

return last;

}

null;

n

n.leftChild)

Maximum is similar.

Binary Search Trees, Red-Black Trees — Practical Software Technology

Alexander.Baumgartner@risc.jku.at



Traversing the Tree: Depth-First g?

Depth-first-traversal:
@ Preorder:
o Visit the node,
o Traverse the nodes left subtree,
o Traverse the nodes right subtree.
o Inorder:
o Traverse the nodes left subtree,
o Visit the node,
o Traverse the nodes right subtree.
o Postorder:
o Traverse the nodes left subtree,

o Traverse the nodes right subtree,
o Visit the node.

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Tree.java — Inorder Traversal |

// Inner class has access to the type variable
public abstract class Visitor {
public abstract void visit (Node<E> node);
}
public void inOrder(Visitor visitor) {
inOrder(root, visitor);
}
private void inOrder(Node<E> current, Visitor visitor) {
if (current = null)
return;
inOrder(current.leftChild , visitor);
visitor.visit(current);
inOrder(current.rightChild , visitor);
}

Binary Search Trees, Red-Black Trees — Practical Software Technology

Alexander.Baumgartner@risc.jku.at



Tree.java — Inorder Traversal |l v

public class Tree<E extends Comparable<E>> {

// Inner class has access to the type variable
public abstract class Visitor {

public abstract void visit (Node<E> node);
}

Tree<Integer> t = new Tree<>();
t.insert (5);
t.insert(11);

final StringBuilder sb = new StringBuilder();
t.inOrder(t.new Visitor () {
public void visit (Node<Integer> node) {
sb.append(node.getData()).append('-");
}
1)

System.out. println(sb.toString());

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Traversing the Tree: Breadth-First g?

Breadth-first-traversal:

o Levelorder:
Use a Queue to go through the tree level-by-level.
@ Start with the root node and visit it (Level 0).
@ Visit the left child, unless it is null.
o Put it into the Queue.
© Visit the right child, unless it is null.
o Put it into the Queue.
@ Poll the next node from the Queue and go to 2.

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Tree.java — Levelorder Traversal

public void levelOrder(Visitor visitor) {
Queue<Node<E>> queue = new ArrayDeque<>();
queue.add(root);
while (!queue.isEmpty()) {
Node<E> current = queue.poll();
visitor .visit(current);

if (current.leftChild != null)
queue.add(current.leftChild);
if (current.rightChild !'= null)

queue.add(current.rightChild);

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Deleting a Node | Z,

Three cases:
@ The node to be deleted is a leaf.
@ The node to be deleted has one child.
@ The node to be deleted has two children.

The first case is trivial.

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



%)

Deletlng a NOde ” Binary Search Trees '&{

To be
deleted

63 57)
»

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Deleting d NOde I” Binary Search Trees ‘g.y

-

To be
deleted

=
(&)}
iy
(6)}

/ T/ 4

Successor
to 25

N

~—

)

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Deleting a Node IV

Binary Search Trees, Red-Black Trees — Practical Software Technology

Binary Search Trees

To find successor
of this node

Go to

/ 11 ght child
Go to 72)

left ch]l/ \
Go to
Jeft child /
78 92

Successor ——» 41

7
/
’
/

¥
No left 43) 74)

.,
'

Alexander.Baumgartner@risc.jku.at



Tree.java — Finding the Successor £,

private Node<E> getSuccessor(Node<E> delNode) {
Node<E> successorParent = delNode;
Node<E> successor = delNode;
// go to right child

for (Node<E> n = delNode.rightChild; n != null;) {
successorParent = successor;
successor = n;

n=n.leftChild;

}
if (successor != delNode.rightChild) {

successorParent.leftChild = successor.rightChild;
successor.rightChild = delNode.rightChild;

}

return successor;

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Tree.java — Deleting a Node o\,

public class Tree<E extends Comparable<E>> {
VaT
* Returns true in case of success and false
* [f the given node was not found.
*/
public boolean delete(E node) {
see Exercise 8
}

private Node<E> getSuccessor (Node<E> delNode) {

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Y
OUt Of Balance? Binary Search Trees '\(j ('

90 )

o If the binary tree is balanced,

find, insert, delete needs O(logn) time.
42
o What happens if the values to )

be inserted are already ordered? /

o Binary trees might become
unbalanced over time.

@ The ability to quickly find, insert, /\
delete a given element is lost.

10) 31)

[\

7 18)

23 )

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Solution: Red-Black Trees I i?

o A red-black tree is a binary search tree with colored nodes.

o It uses O(1) structural changes after an update to stay balanced.
@ The height of a red-black tree storing n entries is O(logn).

@ Every node is either red or black.

@ The root is always black.

@ If a node is red, its children must be black.

© Every path from the root to a “null child”, must contain the same
number of black nodes.

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



: )
Keeping the Balance .
The rules ensure that the height is bound by O(logn).

@ Every node is either red or black.

@ The root is always black.

@ If a node is red, its children must be black.

© Every path from the root to a “null child”, must contain the same
number of black nodes.

To keep this rules intact:

@ You can change the colors of nodes.
@ You can perform rotations. Rotations must do two things at once:

o Raise some nodes and lower others to help balance the tree.
o Ensure that the characteristics of a binary search tree are not violated.

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



2N\,

Example: Change the Color Red-Black Trees N

Black node

Red node Red node

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



2N\,

Example: Rotations are Required Red-Black Trees N

The node 6, cannot be inserted without rotations:

Red parent and
¢ child violates

Rule 3

Changing this to
black violates
Rule 4

Solution: Rotate right such that 25 is the new root.

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



2N\,

Rotatlons Red-Black Trees .E."’
@ One node is chosen as the “top” of the rotation.
o If we're doing a right rotation, this “top” node will move down and to

the right, into the position of its right child.

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



2N\,

Rotatlons Red-Black Trees '%].{
@ One node is chosen as the “top” of the rotation.
o If we're doing a right rotation, this “top” node will move down and to

the right, into the position of its right child.

o Inorder traversal yields the same result!

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Inserting a Node

public class Node<E extends Comparable<E>>
implements Comparable<Node<E>> {
boolean black;

}

On the way down to the insertion point:
o If the current node is black and its two children are both red then:

@ Color the children black. Color the current red, unless it is the root.

@ Check that there are no violations of Rule 3 (Children of red must be
black).

Q If so, perform the appropriate rotations. (At most 2 are needed.)

@ When you reach a leaf node, insert the new node with color red.

o Check again for red-red conflicts, and perform any necessary rotations.

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



7\
Advantages '

The space complexity is O(n), where n is the size of the input.
The tree-height is bound by O(logn).
Searching is done in O(logn) for the worst case time.

Insertion is done in O(logn) for the worst case time.

e 6 66 o6 o

Deletion is done in O(logn) for the worst case time.

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Deleting a Node 7y,

It can be done in O(logn) time, but:

o If deletion is not performed frequently, then a “deleted flag” can be
used to increase the performance.

o Store a boolean value for each node and mark it as deleted instead
of recoloring nodes and rotating the tree.

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



2N\,

Other Examples for Trees . Lo

o Of course, not every tree is a search tree.
@ Trees can be used for data compression (Huffman-Tree).
@ Trees can be used to represent algebraic expression.

Infix: A*(B+C)
Prefix: *A+BC

Pnatfix* ARC+*
Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



Exercise o7,

@ Implement the delete method for the binary tree.

@ Use the method getSuccessor to find the successor like discussed
during the lecture.

public class Tree<E extends Comparable<E>> {
VAT
* Returns true in case of success and false
« [f the given node was not found.
*/
public boolean delete(E node) {
// TODO: Implement this algorithm.

private Node<E> getSuccessor(Node<E> delNode) {

See the guidance for this exercise on the Moodle page.

Binary Search Trees, Red-Black Trees — Practical Software Technology Alexander.Baumgartner@risc.jku.at



	Trees
	Binary Search Trees
	Red-Black Trees
	Trees

