
326.041 (2015S) – Practical Software Technology
(Praktische Softwaretechnologie)

Comparing Objects, Simple Data Structures, Backtracking

Alexander Baumgartner
Alexander.Baumgartner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Comparable/Comparator interfaces Comparing Objects

1 p u b l i c c l a s s Person implements Comparable<Person> {
2 p r i v a t e S t r i n g familyName ;
3 p r i v a t e S t r i n g givenName ;
4 p r i v a t e Date da t eO fB i r t h ;
5 . . .

Sorting objects requires larger/equal/smaller comparisons.

Collections that depend on sorting require comparisons.
Solution 1: Implement the interface Comparable.

You have to implement the method compareTo.

Solution 2: Provide a Comparator implementation.

You have to implement the method compare.

There is a general contract. Given two objects o1 and o2:

if o1 is equal to o2 then comparison returns the integer = 0.
if o1 is larger than o2 then comparison returns an integer > 0.
if o1 is smaller than o2 then comparison returns an integer < 0.

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Comparable – compareTo Comparing Objects

Provide a compareTo method, such that

if person is equal to other person then compareTo(other) = 0.
if person is larger than other person then compareTo(other) > 0.
if person is smaller than other person then compareTo(other) < 0.

1 p u b l i c c l a s s Person implements Comparable<Person> {
2 p r i v a t e S t r i n g familyName ;
3 p r i v a t e S t r i n g givenName ;
4 p r i v a t e Date da t eO fB i r t h ;
5 . . .
6 p u b l i c i n t compareTo (Person o th e r) {
7 i n t cmp = familyName . compareTo (o th e r . familyName) ;
8 i f (cmp != 0) r e t u r n cmp ;
9 cmp = givenName . compareTo (o th e r . givenName) ;

10 i f (cmp != 0) r e t u r n cmp ;
11 r e t u r n da t eO fB i r t h . compareTo (o th e r . d a t eO fB i r t h) ;
12 }

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Comparator – compare Comparing Objects

Write a class which implements the interface Comparator<Person>.
Provide a compare method, such that

if person p1 is equal to person p2 then compare(p1, p2) = 0.
if person p1 is larger than person p2 then compare(p1, p2) > 0.
if person p1 is smaller than person p2 then compare(p1, p2) < 0.

1 c l a s s PersonComp implements Comparator<Person> {
2 p u b l i c i n t compare (Person p1 , Person p2) {
3 i n t cmp = p1 . ge tDateOfB i r th () . compareTo (
4 p2 . ge tDateOfB i r th ()) ;
5 i f (cmp != 0) r e t u r n cmp ;
6 r e t u r n p1 . compareTo (p2) ;
7 }
8 }

Now you can sort a list of persons by their name of by their age:

1 C o l l e c t i o n s . s o r t (p e r s on s) ;
2 C o l l e c t i o n s . s o r t (pe r sons , new PersonComp ()) ;

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Anonymous Implementation Comparing Objects

Java allows anonymous implementation.

Provide an anonymous implementation of Comparator, such that
if person p1 is equal to person p2 then compare(p1, p2) = 0.
if person p1 is larger than person p2 then compare(p1, p2) > 0.
if person p1 is smaller than person p2 then compare(p1, p2) < 0.

1 C o l l e c t i o n s . s o r t (pe r sons , new Comparator<Person >() {
2 p u b l i c i n t compare (Person p1 , Person p2) {
3 i n t cmp = p1 . ge tDateOfB i r th () . compareTo (
4 p2 . ge tDateOfB i r th ()) ;
5 i f (cmp != 0) r e t u r n cmp ;
6 r e t u r n p1 . compareTo (p2) ;
7 }
8 }) ;

To instantiate an anonymous implementation, you have to
implement all the abstract methods.

You can also anonymously override implemented methods.

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Membership: equals and compareTo Comparing Objects

Any collection with some sort of membership test uses equals.

It is trivial to implement, if you have implemented Comparable:

1 p u b l i c boolean e qua l s (Object o t h e r) {
2 i f (! (o t h e r i n s t a n c e o f Person)) r e t u r n f a l s e ;
3 r e t u r n compareTo ((Person) o th e r) == 0 ;
4 }

Now you can test for membership:

1 L i s t<Person> pe r s on s = new Ar r a yL i s t <>() ;
2 . . .
3 p e r s on s . add (. . .
4 p e r s on s . add (. . .
5 . . .
6 Person p = new Person (”Tour ing ” , ”Alan ” , da t eO fB i r t h) ;

7 System . out . p r i n t l n (persons.contains(p)) ;

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

java.util.Objects Comparing Objects

Static utility methods for operating on objects.

null-tolerant methods for
comparing two objects.

equals(Object a, Object b)
deepEquals(Object a, Object b)
compare(T a, T b, Comparator<? super T> c)

computing the hash code of an object,

hashCode(Object o)
hash(Object... values)

returning a string representation for an object,

toString(Object o)
toString(Object o, String nullDefault)

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Hashset and Hashmap Comparing Objects

Any collection that depends on hashing requires both equality testing
and hash codes.

If you implement hashCode, you must also implement equals.

1 p u b l i c i n t hashCode () {
2 r e t u r n Objec t s . hash (familyName , givenName) ;
3 }

Hash codes are not unique. (There might be collisions.)
The hash function should provide a good distribution.
The probability that two different objects have the same hash code
should be small.

If two objects are equal then they must have the same hash code.
Person objects which are not equal can have the same hash code.
Person objects which are equal must have the same hash code.

Collections that use hashing show very good runtime complexity if the
hash function provides a good distribution (and is reasonably fast).

The average case is O(1) for search, insert, delete operations.

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Stack – Push Top Simple Data Structures

Last in first out (LIFO).

Figure: New item pushed on stack
Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Stack – Pop Top Simple Data Structures

Last in first out (LIFO).

Figure: Top item popped from stack
Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Stack – Implementation in Java Simple Data Structures

A generic stack can be implemented as a recursive data structure:

1 p u b l i c c l a s s Stack<T> {
2 p r i v a t e T top ;
3 p r i v a t e Stack<T> t a i l ;
4 . . .
5 p u b l i c vo id push (T elem) {
6 t a i l = new Stack<T>(top , t a i l) ;
7 top = elem ;
8 }
9 p u b l i c T pop () {

10 T r e t = top ;
11 top = t a i l . top ;
12 t a i l = t a i l . t a i l ;
13 r e t u r n r e t ;
14 }
15 p u b l i c boolean i sEmpty () {
16 r e t u r n t a i l == n u l l ;
17 }
18 }

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Queue – FIFO Simple Data Structures

Figure: A queue of some people

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Queue – Add Rear Simple Data Structures

First in first out (FIFO).

Figure: New item inserted at rear of queue
Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Queue – Remove Front Simple Data Structures

First in first out (FIFO).

Figure: Item removed from front of queue
Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Circular Queue Simple Data Structures

Bounded queues can be implemented as rings.

Figure: Rear and front pointer modulo length
Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Circular Queue – Implementation Simple Data Structures

1 p u b l i c c l a s s Queue<T> {
2 p r i v a t e Object [] q ;
3 p r i v a t e i n t f r o n t = −1;
4 p r i v a t e i n t r e a r = −1;
5
6 p u b l i c Queue (i n t maxSize) {
7 q = new Object [maxSize] ;
8 }
9 p u b l i c vo id i n s e r t (T elem) {

10 q[(++ r e a r) % q . l e n g t h] = elem ;
11 }
12 p u b l i c T remove () {
13 r e t u r n (T) q[(++ f r o n t) % q . l e n g t h] ;
14 }
15 p u b l i c i n t s i z e () {
16 r e t u r n r e a r − f r o n t ;
17 }
18 }

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Priority Queue Simple Data Structures

Less urgent letters
are inserted lower

Letter on top is
always processed first

More urgent letters
are inserted higher

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Priority Queue – Insert Simple Data Structures

Most important first out.

Figure: New item inserted in priority queue
Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Priority Queue – Remove Simple Data Structures

Most important first out.

Figure: Most important items removed from front of priority queue
Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Priority Queue – Implementation Simple Data Structures

1 p u b l i c c l a s s Pr i o r i t yQueu e {
2 p r i v a t e i n t maxSize ;
3 p r i v a t e i n t [] q ;
4 p r i v a t e i n t s i z e ;
5
6 p u b l i c Pr i o r i t yQueu e (i n t maxSize) {
7 t h i s . maxSize = maxSize ;
8 t h i s . q = new i n t [maxSize] ;
9 }

10 p u b l i c vo id i n s e r t (i n t i t em) {
11 i n t j = s i z e++;
12 whi le (−− j >= 0 && item > q [j])
13 q [j + 1] = q [j] ; // s h i f t i tem up
14 q [j + 1] = item ;
15 }
16 p u b l i c i n t remove () {
17 r e t u r n q[−− s i z e] ;
18 }
19 p u b l i c i n t s i z e () { r e t u r n s i z e ; }
20 }
Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Backtracking – Introduction Backtracking

Given: A problem which has a set of constraints.

Find: A solution that fulfills all the constraints.

We can represent the search space by a tree:

The root of the tree represents 0 choices.
Nodes at depth 1 represent first choice.
Nodes at depth 2 represent the second choice, etc.
A path from the root to a leaf represents a candidate solution.

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Example – Sum of Subsets Backtracking

Given: n positive integers w1, . . . , wn and a positive integer S.

Find: All subsets of w1, . . . , wn that sum to S.

It is a problem which has a set of constraints:
Iterate the subsets of w1, . . . , wn.
The constraint is that the subset has to sum up to S.

Example: n = 3, w1 = 2, w2 = 4, w3 = 6, and S = 6.

Subsets: {}, {2}, {4}, {6}, {2, 4}, {2, 6}, {4, 6}, {2, 4, 6}.
Two solutions {6} and {2, 4} fulfill the constraint S = 6.

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Example – Tree of Sums of Subsets Backtracking

We draw a binary tree.

Nodes: Represent the sum.
Edges: Left for include wi and right for exclude wi.
Leafs: Are the possible combinations.

Figure: Tree of sums of subsets

w1 :

w2 :

w3 :

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Example – Depth First Search Backtracking

Problem can be solved using depth first search of the tree.

If a node is a leaf, check if the solution satisfies the constraints.

Backtracking:

If a node can not lead to a solution, then go back to the parent.
Follow one of the edges and after going back try the other one.

Backtracking can be implemented by recursion.

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Sum of Subsets – Recursive Solution Backtracking

1 p r i v a t e i n t [] numbers ;
2 p r i v a t e boolean [] i n c l u d e ;
3 . . .
4 p u b l i c vo id f i n dSub s e t (i n t sum) {
5 f i n dSub s e t (0 , 0 , sum) ;
6 }
7 p r i v a t e vo id f i n dSub s e t (i n t l v l , i n t nodeSum , i n t sum) {
8 i f (l v l == numbers . l e n g t h) {
9 i f (nodeSum == sum) so l u t i onFound () ;

10 } e l s e i f (nodeSum <= sum) {
11 f i n dSub s e t (l v l + 1 , nodeSum , sum) ;
12 i n c l u d e [l v l] = t rue ;
13 f i n dSub s e t (l v l + 1 , nodeSum + numbers [l v l] , sum) ;
14 i n c l u d e [l v l] = f a l s e ;
15 }
16 }

The variable lvl is the current depth.
The boolean array include is the current path of decisions.

true stands for yes and false for no.
Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Backtracking – 8 Queens Problem Backtracking

Problem: How to place 8 queens on chess-board, such that they do
not capture each other.

Solution: Use backtracking.

Approach: Two queens at the same row cannot be a solution.

Chess Board

Q0 Qj

q[]

0 Same row

q[i] 6= q[j]
|q[j] − q[i]|6= j − i

It suffices to use an array q[] with the position of a queen per row.

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Backtracking – 8 Queens Problem Backtracking

Problem: How to place 8 queens on chess-board, such that they do
not capture each other.

Solution: Use backtracking.

Approach: Two queens at the same row cannot be a solution.

Chess Board

Q0

Q1

q[]

0

3
Same row

q[i] 6= q[j]
|q[j] − q[i]|6= j − i

It suffices to use an array q[] with the position of a queen per row.

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Backtracking – 8 Queens Problem Backtracking

Problem: How to place 8 queens on chess-board, such that they do
not capture each other.

Solution: Use backtracking.

Approach: Two queens at the same column cannot be a solution.

Chess Board

Q0

Q1

q[]

0

0
Same row
q[i] 6= q[j]

|q[j] − q[i]|6= j − i

It suffices to use an array q[] with the position of a queen per row.

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Backtracking – 8 Queens Problem Backtracking

Problem: How to place 8 queens on chess-board, such that they do
not capture each other.

Solution: Use backtracking.

Approach: Two queens at the same diagonal cannot be a solution.

Chess Board

Q0

·
· Q2

· ·
Q4

q[]

0

6

4

Same row
q[i] 6= q[j]
|q[j] − q[i]|6= j − i

It suffices to use an array q[] with the position of a queen per row.

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

8 Queens – Recursive Solution Backtracking

We solve a more general problem, the n queens problem:

1 p r i v a t e i n t [] q = new i n t [n] ; // n = 8 f o r 8 queens
2
3 p r i v a t e boolean i s C o n s i s t e n t (i n t n) {
4 f o r (i n t i = 0 ; i < n ; i++) {
5 i f (q [i] == q [n]) r e t u r n f a l s e ;
6 i f (Math . abs (q [i] − q [n]) == n − i) r e t u r n f a l s e ;
7 }
8 r e t u r n t rue ;
9 }

10 p u b l i c vo id s o l v eBoa rd () { s o l v eBoa rd (0) ; }
11 p r i v a t e vo id s o l v eBoa rd (i n t n) {
12 i f (n == q . l e n g t h) s o l u t i onFound () ;
13 e l s e
14 f o r (i n t i = 0 ; i < q . l e n g t h ; i++) {
15 q [n] = i ;
16 i f (i s C o n s i s t e n t (n)) so l v eBoa rd (n + 1) ;
17 }
18 }

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Exercise

The priority queue from the lecture features fast removal of the
high-priority item O(1) but slow insertion of new items O(n).

Modify the priority queue from the lecture:

Modify the runtime behavior such that the priority queue guarantees
O(1) insertion time but slower removal of the high-priority item O(n).

Make the priority queue generic (like the circular queue from the
lecture).

Therefore, you should only allow types which implement the
Comparable interface.
The priority is determined by the method compareTo.

Override the method toString from java.lang.Object such that it
returns the string representation of the contents of the priority queue.

See the guidance for this exercise on the Moodle page.

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Exercise

Find a way through a maze.
Create a class Maze which reads a 2D maze from a text file.

Provide a public constructor which has java.io.File as its argument.
Use a recursive backtracking approach like in the lecture.

S
#
#
#
######
#
#
#
#
#
######## ###

S
. #
. . . ###### .
.
.
. . . . #
. #
. . .
.
. . .
######## . ###

The letter
S denotes
the start
position.

Use the dot
to draw the
way out of
the maze.

Provide a documentation which describes the algorithm.

Comparing Objects, Simple Data Structures, Backtracking – Practical Software Technology Alexander.Baumgartner@risc.jku.at

	Comparing Objects
	Simple Data Structures
	Backtracking

