Alloy and the Alloy Analyzer

Klaus Reisenberger

JKU Linz

Klaus.Reisenberger@gmx.at

November 23, 2014

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 1/26



@ 'ntroduction
Q The Language
e Example

O Alloy Analyzer

e Conclusion

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 2/26



Section 1

Introduction

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 3/26



@ Alloy: A language for describing structures
@ Alloy Analyzer: A tool for exploring this structures.

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 4/26



@ Developed by the Software Design Group at MIT lead by
Professor Daniel Jackson in 1997.

@ First success with VDM (Vienna Development Method) in 1980 .

@ During his PhD at MIT he got intrigued by Larch (system for formal
specification and verification of program modules).

@ Theorem proving could not fully be automated and formal models
where hard to construct.

@ In 1992 became fond of the Z language (less complex than
previous languages, based on the simplest notions of set theory).

@ But it was even less analyzable than the Z language.
@ Idea of Alloy: bring the power of modelcheckers to Z.

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 5/26



Alloy

@ http://alloy.mit.edu/alloy

@ Deeply rootet in Z.

@ It has a simpler language.

@ Analysis relies on SAT (boolean satisfiability).

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 6/26



Alloy Analyzer

@ Freely available online for a variety of platforms
http://alloy.mit.edu/alloy/download.html

@ Translates constraints written in Alloy into boolean constraints and
passes them to a SAT solver.

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 7126



Section 2

The Language

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 8/26



A Signature is a set of atoms.

@ sigA{}

@ sigA,B{}

@ abstract sig A { }
sig B extends A { }
sig C extends A { }

abstract sig Person { }

sig Woman extends Person { }

sig Man extends Person { }

Person is partitioned by the disjoint subsets Woman and Man.

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 9/26



Multiplicity

@ set: zero or more
@ one: exactly one
@ lone: zero or one
@ some: one or more

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 10/ 26



After the signature comes its body. It defines relations with its
signature as domain.

@ sigA{f:e}
So f is a binary relation with domain A and range e.

abstract sig Person {
father: one Man,
mother: one Woman

}

sig Woman extends Person { }
sig Man extends Person { }

Every person has exactly one father and mother.

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 11/26



Facts are constraints that are assumed always to hold. They restrict
the model.

o fact {F)
@ sigA{...}{F}

sig Phone { }

sig Call {from, to: Phone} { from != to }

fact { all x: Call | x.from != x.to }

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 12/ 26



Functions

Functions are named expression intended for reuse.

@ funf[xl:el,...,xn:en] : e{E}

Example

fun grandpas[p: Person] : set Person {
p.(mother + father). father

}

So the grandpas of a person are the fathers of one’s own mother and
father.

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 13/26



Predicates are constraints that you don’t want to record as facts.
(e.g.,you might want to analyze a model with a particular constraint

included, and then excluded)

@ predp(x1:el,...,xn:en] { E}

pred ownGrandpa [p: Person] {
p in grandpas[p]
ks

November 23, 2014 14/ 26

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer



Assertions

Assertions are constraints that are expected to follow from the facts of
the model. The analyzer checks assertions to detect design flaws.

@ asserta{ F}

Example

sig Node {
children: set Node
}

one sig Root extends Node {}

fact {

Node in Root.*children

}

assert someParent {

all n: Node - Root | some children.n
}

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 15/26



The check command instructs the analyzer to search for
counterexample to assertions within scope.

check a scope

Example

fact {
no p: Person | p in p. (mother + father)
wife = "husband

}

assert noSelfFather {
no m: Man | m = m. father

}
check noSelfFather

So we search for a counterexample to noSelfFather within a scope of
at most 3 Persons (default)

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 16 /26



@ Set operators
e Union +
e Intersection &
e Difference —
@ Subsetin
e Equality =
@ Product operator: — >
@ Operators on relations
e Transpose: ~
e Transitive closure:”

o Reflexive transitive closure: *

@ Boolean operators
Negation: ! not

Conjunction: && and

Implication: => implies

o
(* ]
e Disjunction: || or
(* ]
e Alternative: else
(* ]

Bi-implication: <=> iff

Klaus Reisenberger ( JKU Linz Klaus.Reisen

Alloy and the Alloy Analyzer

November 23, 2014

17 /26



@ allxe|F
@ all, some, one, lone, no

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 18 /26



Section 3

Example

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 19/26



File system - Part 1

// A file system object in the file system
sig FSObject { parent: lone Dir }

// A directory in the file system
sig Dir extends FSObject { contents: set FSObject }

// A file in the file system
sig File extends FSObject { }

// A directory is the parent of its contents
fact { all d: Dir, o: d.contents | o.parent = d }

// All file system objects are either files or directories
fact { File + Dir = FSObject }

// There exists a root
one sig Root extends Dir { } { no parent }

// File system is connected
fact { FSObject in Root.*contents }

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014



File system - Part 2

// The contents path is acyclic

assert acyclic { no d: Dir

d in d. " contents }

// Now check it for a scope of 5

check acyclic for 5

// File system has one root
assert oneRoot { one d: Dir

// Now check it for a scope
check oneRoot for 5

// Every fs object is in at
assert onelocation { all o:

// Now check it for a scope
check onelLocation for 5

| no d.parent }

of 5

most one directory
FSObject | lone d: Dir

of 5

o in d.contents }

Klaus Reisenberger ( JKU Linz Klaus.Reisen

Alloy and the Alloy Analyzer

November 23, 2014 21 /26



Section 4

Alloy Analyzer

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 22 /26



£ ChUsers\Klaus\Desktophalloy analyzer.als

M| File Edit Execute Options Window Help

e A7 4

|| Mewe Open Reload Save Execute Show

A file system object in the file system
FSObject { parent: lone Dir }

directory in the file system
Dir extends FSObject { contents: set FSObject }

A file in the file system
sig File extends FSObject { F

A directory is the parent of its contents
fact { all d: Dir, o: d.contents | o.parent=d }

All file system objects are either files or directories
fact { File + Dir = FSObject }

here exists a root
one sig Root extends Dir { } { no parent }

/{ File system is connected
i|fact { FSObject in Root.*contents }

// The contents path is acydic
assert acyclic { no d: Dir | d in d.~contents }

// Now check it for a scope of 5
check acyclic for 5

({ File system has one root
assert oneRoot { one d: Dir | no d.parent }

{{ Now check it for a scope of 5
check oneRoot for 5

// Every fs object is in at most one directory
assert oneLocation { all o: FSObject | lone d: Dir | o in d.contents }

// Now check it for a scope of 5
check oneLocation for 5

Line 2, Column 24 [modified]

Executing ~Check oneRoot tor 5~
Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
1016 vars. 62 primary vars. 1470 clauses. 46ms.
No counterexample found. Assertion may be valid. 12ms.

Executing "Check oneLocation for 5™
Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
1079 vars. 67 primary vars. 1543 clauses. 42ms.
Mo counterexample found. Assertion may be valid. 2ms.

Executing "Check acyclic for 5"
Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
1072 vars. 67 primary vars. 1803 clauses. 35ms.
Mo counterexample found. Assertion may be valid. 25ms.

Executing "Check oneRoot for 5™

Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
1016 vars. 62 primary vars. 1470 clauses. 45ms.

Mo counterexample found. Assertion may be valid. 25ms.

Executing "Check oneLocation for 5™

Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
1079 vars. 67 primary vars. 1543 clauses. 65ms.

No counterexample found. Assertion may be valid. 2ms.

3 ds were ted. The results are:

#1: No counterexample found. acyclic may be valid.

#2: No counterexample found. oneRoot may be valid.
#3: No counterexample found. onel ocation may be valid.

Executing "Check oneLocation for 5™

Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
1079 vars. 67 primary vars. 1543 clauses. 41ms.

Mo counterexample found. Assertion may be valid. 2ms.

Metamodel successfully generated.

Klaus Reisenberger ( JKU Linz Klaus.Reisen

Alloy Analyzer



Section 5

Conclusion

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 24 /26



Applications

Alloy is used in many applications:
http://alloy.mit.edu/alloy/applications.html
@ Equals Checker: A tool for checking equal methods in Java.
@ Nitpick: A counterexample generator for Isabelle/HOL.
@ Margrave: A security policy analyzer for firewalls.

@ Secrecy Modeling Language: A language for composing and
validating security models.

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 25/26



References

® Jackson, Daniel:

Software Abstractions : Logic, Language, and Analysis.
Cambridge: MIT Press, 2012.

@ Alloy MIT Online Tutorial
Retrieved November 19, 2014, from
http://alloy.mit.edu/alloy/tutorials/online/

W Edward Yue Shung Wong, Michael Herrmann, Omar Tayeb
A Guide To Alloy

@ Alloy 4 Tutorial Materials
Retrieved November 19, 2014, from
http://alloy.mit.edu/alloy/tutorials/day-course/

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014



