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Section 1

Introduction
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@ Alloy: A language for describing structures
@ Alloy Analyzer: A tool for exploring this structures.
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@ Developed by the Software Design Group at MIT lead by
Professor Daniel Jackson in 1997.

@ First success with VDM (Vienna Development Method) in 1980 .

@ During his PhD at MIT he got intrigued by Larch (system for formal
specification and verification of program modules).

@ Theorem proving could not fully be automated and formal models
where hard to construct.

@ In 1992 became fond of the Z language (less complex than
previous languages, based on the simplest notions of set theory).

@ But it was even less analyzable than the Z language.
@ Idea of Alloy: bring the power of modelcheckers to Z.
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Alloy

@ http://alloy.mit.edu/alloy

@ Deeply rootet in Z.

@ It has a simpler language.

@ Analysis relies on SAT (boolean satisfiability).
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Alloy Analyzer

@ Freely available online for a variety of platforms
http://alloy.mit.edu/alloy/download.html

@ Translates constraints written in Alloy into boolean constraints and
passes them to a SAT solver.
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Section 2

The Language
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A Signature is a set of atoms.

@ sigA{}

@ sigA,B{}

@ abstract sig A { }
sig B extends A { }
sig C extends A { }

abstract sig Person { }

sig Woman extends Person { }

sig Man extends Person { }

Person is partitioned by the disjoint subsets Woman and Man.
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Multiplicity

@ set: zero or more
@ one: exactly one
@ lone: zero or one
@ some: one or more
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After the signature comes its body. It defines relations with its
signature as domain.

@ sigA{f:e}
So f is a binary relation with domain A and range e.

abstract sig Person {
father: one Man,
mother: one Woman

}

sig Woman extends Person { }
sig Man extends Person { }

Every person has exactly one father and mother.
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Facts are constraints that are assumed always to hold. They restrict
the model.

o fact {F)
@ sigA{...}{F}

sig Phone { }

sig Call {from, to: Phone} { from != to }

fact { all x: Call | x.from != x.to }
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Functions

Functions are named expression intended for reuse.

@ funf[xl:el,...,xn:en] : e{E}

Example

fun grandpas[p: Person] : set Person {
p.(mother + father). father

}

So the grandpas of a person are the fathers of one’s own mother and
father.
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Predicates are constraints that you don’t want to record as facts.
(e.g.,you might want to analyze a model with a particular constraint

included, and then excluded)

@ predp(x1:el,...,xn:en] { E}

pred ownGrandpa [p: Person] {
p in grandpas[p]
ks
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Assertions

Assertions are constraints that are expected to follow from the facts of
the model. The analyzer checks assertions to detect design flaws.

@ asserta{ F}

Example

sig Node {
children: set Node
}

one sig Root extends Node {}

fact {

Node in Root.*children

}

assert someParent {

all n: Node - Root | some children.n
}

Klaus Reisenberger ( JKU Linz Klaus.Reisen Alloy and the Alloy Analyzer November 23, 2014 15/26



The check command instructs the analyzer to search for
counterexample to assertions within scope.

check a scope

Example

fact {
no p: Person | p in p. (mother + father)
wife = "husband

}

assert noSelfFather {
no m: Man | m = m. father

}
check noSelfFather

So we search for a counterexample to noSelfFather within a scope of
at most 3 Persons (default)
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@ Set operators
e Union +
e Intersection &
e Difference —
@ Subsetin
e Equality =
@ Product operator: — >
@ Operators on relations
e Transpose: ~
e Transitive closure:”

o Reflexive transitive closure: *

@ Boolean operators
Negation: ! not

Conjunction: && and

Implication: => implies

o
(* ]
e Disjunction: || or
(* ]
e Alternative: else
(* ]

Bi-implication: <=> iff
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@ allxe|F
@ all, some, one, lone, no
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Section 3

Example
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File system - Part 1

// A file system object in the file system
sig FSObject { parent: lone Dir }

// A directory in the file system
sig Dir extends FSObject { contents: set FSObject }

// A file in the file system
sig File extends FSObject { }

// A directory is the parent of its contents
fact { all d: Dir, o: d.contents | o.parent = d }

// All file system objects are either files or directories
fact { File + Dir = FSObject }

// There exists a root
one sig Root extends Dir { } { no parent }

// File system is connected
fact { FSObject in Root.*contents }
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File system - Part 2

// The contents path is acyclic

assert acyclic { no d: Dir

d in d. " contents }

// Now check it for a scope of 5

check acyclic for 5

// File system has one root
assert oneRoot { one d: Dir

// Now check it for a scope
check oneRoot for 5

// Every fs object is in at
assert onelocation { all o:

// Now check it for a scope
check onelLocation for 5

| no d.parent }

of 5

most one directory
FSObject | lone d: Dir

of 5

o in d.contents }
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Section 4

Alloy Analyzer
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£ ChUsers\Klaus\Desktophalloy analyzer.als

M| File Edit Execute Options Window Help

e A7 4

|| Mewe Open Reload Save Execute Show

A file system object in the file system
FSObject { parent: lone Dir }

directory in the file system
Dir extends FSObject { contents: set FSObject }

A file in the file system
sig File extends FSObject { F

A directory is the parent of its contents
fact { all d: Dir, o: d.contents | o.parent=d }

All file system objects are either files or directories
fact { File + Dir = FSObject }

here exists a root
one sig Root extends Dir { } { no parent }

/{ File system is connected
i|fact { FSObject in Root.*contents }

// The contents path is acydic
assert acyclic { no d: Dir | d in d.~contents }

// Now check it for a scope of 5
check acyclic for 5

({ File system has one root
assert oneRoot { one d: Dir | no d.parent }

{{ Now check it for a scope of 5
check oneRoot for 5

// Every fs object is in at most one directory
assert oneLocation { all o: FSObject | lone d: Dir | o in d.contents }

// Now check it for a scope of 5
check oneLocation for 5

Line 2, Column 24 [modified]

Executing ~Check oneRoot tor 5~
Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
1016 vars. 62 primary vars. 1470 clauses. 46ms.
No counterexample found. Assertion may be valid. 12ms.

Executing "Check oneLocation for 5™
Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
1079 vars. 67 primary vars. 1543 clauses. 42ms.
Mo counterexample found. Assertion may be valid. 2ms.

Executing "Check acyclic for 5"
Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
1072 vars. 67 primary vars. 1803 clauses. 35ms.
Mo counterexample found. Assertion may be valid. 25ms.

Executing "Check oneRoot for 5™

Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
1016 vars. 62 primary vars. 1470 clauses. 45ms.

Mo counterexample found. Assertion may be valid. 25ms.

Executing "Check oneLocation for 5™

Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
1079 vars. 67 primary vars. 1543 clauses. 65ms.

No counterexample found. Assertion may be valid. 2ms.

3 ds were ted. The results are:

#1: No counterexample found. acyclic may be valid.

#2: No counterexample found. oneRoot may be valid.
#3: No counterexample found. onel ocation may be valid.

Executing "Check oneLocation for 5™

Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20
1079 vars. 67 primary vars. 1543 clauses. 41ms.

Mo counterexample found. Assertion may be valid. 2ms.

Metamodel successfully generated.
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Section 5

Conclusion
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Applications

Alloy is used in many applications:
http://alloy.mit.edu/alloy/applications.html
@ Equals Checker: A tool for checking equal methods in Java.
@ Nitpick: A counterexample generator for Isabelle/HOL.
@ Margrave: A security policy analyzer for firewalls.

@ Secrecy Modeling Language: A language for composing and
validating security models.
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