
Alloy - Part II
Dynamic Models and Automation

Klaus Reisenberger

JKU Linz

Klaus.Reisenberger@gmx.at

06.03.2015

Outline

Dynamic Modeling

Translation of a First-Order Formula to a Quantifier-free
Boolean Formula

Section 1

Dynamic Modeling

Static vs Dynamic Modeling

I Static models
I Describe states (file system)

I Dynamic models
I Describe transitions between states

Example - River Crossing Part I
/* Impose an ordering on the State. */

open util/ordering[State]

/* Farmer and his possessions are objects. */

abstract sig Object { eats : set Object }
one sig Farmer, Fox, Chicken, Grain extends Object {}

/* Defines what eats what and the farmer is not around. */

fact { eats = Fox->Chicken + Chicken->Grain}

/* Stores the objects at near and far side of river. */

sig State { near, far : set Object }

/* In the initial state, all objects are on the near side. */

fact { first.near = Object && no first.far }

/* At most one item to move from ’from’ to ’to’ */

pred crossRiver [from, from’, to, to’: set Object] {
one x: from | {
from’ = from - x - Farmer - from’.eats
to’ = to + x + Farmer

}

}

Example - River Crossing Part II

/* crossRiver transitions between states */

fact {
all s: State, s’: s.next {
Farmer in s.near =>
crossRiver [s.near, s’.near, s.far, s’.far]

else
crossRiver [s.far, s’.far, s.near, s’.near]

}

}

/* the farmer moves everything to the far side of the river. */

run { last.far=Object } for exactly 8 State

Section 2

Translation of a First-Order Formula to a
Quantifier-free Boolean Formula

Subsection 1

Introduction

Introduction

Automatic analysis for relational logic:
Input:
Formula and scope
Output:
Checks whether a model exists and if so returns it

I Undecidable
I Can be used in 2 ways:

I Check consistency of a formula
I Check validity of a theorem

Overview

I Syntax
I Semantics
I Analysis
I Performance
I Future work

Syntax

Semantics

Example
all x: X | some y: Y | x.r = y

Subsection 2

Analysis

5 Steps of Analysis

I Conversion to negation normal form and skolemization
I Translation
I Conversion to CNF
I Handover to SAT solver
I Construction of a model of the relational formula

Normalization of the Relational Formula

I Convert to NNF (negation normal form)
I Skolemize it

Example
!all x: X | some y: Y | x.r=y

some x: X | all y: Y | !x.r=y

all y: Y | !x.r=y
some z: X | z=x

Overview of the Translation

Input:
Relational formula
Output:
Boolean formula for a given scope

I Represent relations as matrices of boolean values
I Constraints on relations can be expressed as boolean

formulas

Translation Rules

Example Translation

Example
all y: Y | !x.r = y

with a scope of 2

Conversion to CNF, Solving and Mapping Back

The following steps are:

I Convert to CNF and pass to the solver
I If a solution exists we can reconstruct a model of the

relational formula

Performance

Three models originally written in NP

I Finder, a toy model for a Macintosh file system
I Style, a model of an aspect of the paragraph style

mechanism of Microsoft Word
I Mobile IP, a model that exposed a flaw in an internet

protocol for forwarding messages to mobile hosts

Future Work - KodKod

Kodkod is a new relational engine designed expressly as a
plugin component that can easily be incorporated as a backend
of another tool.

I Want to use Alloy as a backend engine
I Disadvantages of current implementation:

I A clean API
I Support for partial instances
I A mechanism for sharing subformulas and subexpressions

References

Jackson, Daniel:
Software Abstractions : Logic, Language, and Analysis.
Cambridge: MIT Press, 2012.

Alloy MIT Online Tutorial
Retrieved November 19, 2014, from
http://alloy.mit.edu/alloy/tutorials/online/

Jackson , Daniel:
Automating First-Order Relational Logic

