
326.041 (2015S) – Practical Software Technology
(Praktische Softwaretechnologie)
GC, Packages, Polymorphism

Alexander Baumgartner
Alexander.Baumgartner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Ada Lovelace

Figure: Ada Lovelace – The First Computer Programmer.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Memory Management Garbage Collector

Java manages the memory. There is no explicit destructor method.

When using the keyword new, memory will be allocated for the object
to be created.

Unused objects are deleted by a process known as garbage collection

JVM automatically runs GC periodically.

Identifies objects no longer in use (no references).
Finalizes those objects (deconstructs them).
Frees up memory used by destroyed objects.
Defragments memory.

GC introduces overhead.

Avoid unnecessary object creation and deletion.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Memory Management Garbage Collector

1 p u b l i c c l a s s Test {
2 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
3 Person p = new Person (”Tina ” , 22 , f a l s e) ;
4 . . .
5 p = new Person (”Max” , 11 , t rue) ;
6 // No more r e f e r e n c e to Tina ⇒ GC f r e e s memory
7 . . .
8 }
9 } GC detects and frees unused objects.

Reduces the size/complexity of the source code.

Prevents deallocation of objects that are still in use.

Prevents double-freeing objects.

...

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Packages for Modular Programming Packages

Each java class is part of a package.

Packages provide modular programming in Java.

Similar to the modules of Modula.

The root of a package structure is called default package.

Every source file provides information about the package it belongs
to. No declaration means: ”I belong to the default package.”

1 p u b l i c c l a s s Test {
2 . . .
3 } No package declaration ⇒ Class belongs to the default package.

1 package at . j ku . t e a c h i n g . swtech ; // FIRST STATEMENT
2 p u b l i c c l a s s Hel loWor ld {
3 . . .
4 } This class belongs to the package at.jku.teaching.swtech.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Packages and Folders Packages

Package structures correspond to folders in the file system, starting
with an arbitrary root folder.

1 p u b l i c c l a s s Test {
2 . . .
3 } No package declaration ⇒ Class belongs to the default package.

1 package at . j ku . t e a c h i n g . swtech ; // FIRST STATEMENT
2 p u b l i c c l a s s Hel loWor ld {
3 . . .
4 } This class belongs to the package at.jku.teaching.swtech.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Accessing Classes from other Packages Packages

We want to access HelloWorld from a class of another package:

1 package at . j ku . t e a c h i n g . swtech ;
2 p u b l i c c l a s s Hel loWor ld {
3 . . .
4 } This class belongs to the package at.jku.teaching.swtech.

The full name of a class consists of package-name.class-name:

1 new at . j ku . t e a c h i n g . swtech . He l l oWor ld () ;
2 at . j ku . t e a c h i n g . swtech . He l l oWor ld . STATIC FIELD ;

The import statement can be used to shorten it:

1 package . . . // Package d e c l a r a t i o n or d e f a u l t package
2 import at . j ku . t e a c h i n g . swtech . He l l oWor ld ;
3 import j a v a . u t i l . ∗ ; // impor t package (bad p r a c t i c e)
4 . . .
5 new Hel loWor ld () ;
6 He l loWor ld . STATIC FIELD ;
7 . . .

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Important API Packages Packages

java.lang: Fundamental classes. No import needed.
java.lang.reflect: Dynamic invocation, Reflection.

java.util: Array manipulation, Date and Time, Data Structures,
Random numbers,...

java.util.regex: Regular expression.
java.util.concurrent: Concurrent programing.

java.io: File operations.

java.nio: New I/O framework for Java.

java.math: Arbitrary precision arithmetics.

java.net: Networking operations, sockets, DNS lookups.

java.security: Encryption and decryption.

java.sql: Java Database Connectivity.

java.awt: Native GUI components.

javax.swing: Platform-independent GUI components.

. . .

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

What is Polymorphism Polymorphism

Poly: ”many” from Greek πoλύ (poly)

Morp: ”form, figure, silhouette”from Greek µoρϕή (morphe)

Figure: Example for polymorphism in biology.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

What is Polymorphism Polymorphism

Poly: ”many” from Greek πoλύ (poly)

Morp: ”form, figure, silhouette”from Greek µoρϕή (morphe)

Polymorphism by overloading:

1 // The method p r i n t l n from Pr in tS t r eam i s polymorph
2 System . out . p r i n t l n (” He l l o ”) ; // App l i c a b l e to S t r i n g
3 System . out . p r i n t l n (44) ; // App l i c a b l e to i n t
4 System . out . p r i n t l n (t rue) ; // App l i c a b l e to boo l ean
5 . . . // App l i c a b l e to . . .

Figure: Example for polymorphism in Java I.

Polymorphism is the ability to create a function, a variable, or an
object that has more than one form.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

What is Polymorphism Polymorphism

Poly: ”many” from Greek πoλύ (poly)

Morp: ”form, figure, silhouette”from Greek µoρϕή (morphe)

Polymorphism by inheritance:

1 Object o ; // Object o can ho ld any r e f e r e n c e type
2 o = new Object () ; // o can be o f type Object
3 o = new S t r i n g () ; // o can be o f type S t r i n g
4 o = new i n t [] { } ; // o can be o f type i n t []
5 . . . // o can be o f type . . .

Figure: Example for polymorphism in Java II.

Polymorphism is the ability to create a function, a variable, or an
object that has more than one form.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

What is Polymorphism Polymorphism

Poly: ”many” from Greek πoλύ (poly)

Morp: ”form, figure, silhouette”from Greek µoρϕή (morphe)

Polymorphism by generic types:

1 // Gene r i c programming = w r i t i n g c l a s s e s o f v a r i a b l e type
2 L i s t<St r i ng> l 1 = new Ar r a yL i s t <>() ; // L i s t o f S t r i n g s
3 L i s t<Person> l 2 = new Ar r a yL i s t <>() ; // L i s t o f Pe r sons
4 . . . // L i s t o f . . .
5 // I n f i n i t e number o f d i f f e r e n t t yp e s w i th same beha v i o r

Figure: Example for polymorphism in Java III.

Polymorphism is the ability to create a function, a variable, or an
object that has more than one form.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Why Polymorphism? Polymorphism

Polymorphism encourages abstraction.

More generalized programs can be extended more easily.

E.g.: Online shopping application.

Multiple payment methods.
Might be implemented as separate classes because of differences.
Would require if-else statements everywhere to test for the different
types of payment methods.
Solution: Define a base class PaymentMethod and then derive
subclasses for each payment type.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Polymorphism by Overloading Polymorphism

Overloading: Compile time polymorphism (static binding).

Argument type:

1 p u b l i c s t a t i c f l o a t abs (f l o a t v a l) {. . .
2 p u b l i c s t a t i c i n t abs (i n t v a l) {. . .

Operator overloading (e.g. ”+”) also belongs to this type.
In Java you can not define your own operators.

Argument count:

1 p u b l i c Person (S t r i n g name , i n t age) {. . .
2 p u b l i c Person (S t r i n g name , i n t age , boolean man) {..

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Polymorphism by Inheritance Polymorphism

Figure: Inheritance is a tree of classes with the class Object as its root.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

The Root java.lang.Object Polymorphism

Has a default constructor.

Offers some public methods:

boolean equals(Object obj): Tests for reference equality
String toString(): Returns ”type-name@hash-code”
Class<?> getClass(): Returns the type information
int hashCode(): Returns a hash value (typically the internal address)
...

Offers some protected methods:

Object clone(): Returns a shallow copy of the object
...

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Polymorphism by Inheritance in Java Polymorphism

Every class inherits from java.lang.Object.

A class may inherit from another class by using the keyword extends.

1 p u b l i c c l a s s Person {
2 // F i e l d s
3 . . .
4 // Methods
5 . . .
6 }
7 p u b l i c c l a s s Student extends Person {
8 . . .
9 }

The class Student inherits from the class Person.
public fields and methods.
protected fields and methods.

Inheritance propagates up the tree.
Student ⇒ Person ⇒ java.lang.Object.
Student inherits from java.lang.Object.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Overriding Polymorphism

Overriding: Runtime polymorphism (dynamic binding).

To override a method, the subclass method must have the same
signature. E.g.: public String toString() {...}
1 p u b l i c c l a s s Person {
2 . . .
3 p u b l i c S t r i n g t o S t r i n g () {
4 r e t u r n ” I am a pe r son and my name i s ” + name ;
5 }
6 }
7 p u b l i c c l a s s Student extends Person {
8 . . .
9 p u b l i c S t r i n g t o S t r i n g () {

10 r e t u r n ” I am a s tuden t and my name i s ” + name ;
11 }
12 }

Person overrides toString() from java.lang.Object.

Student overrides toString() from Person.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Overriding Polymorphism

Overriding: Runtime polymorphism (dynamic binding).

To override a method, the subclass method must have the same
signature. E.g.: public String toString() {...}
1 Object o ;
2 o = new Object () ;
3 System . out . p r i n t l n (o) ; // type−name@hash−code
4 o = new Person (. . .) ;
5 System . out . p r i n t l n (o) ; // I am a pe r son and . . .
6 o = new Student (. . .) ;
7 System . out . p r i n t l n (o) ; // I am a s tuden t and . . .

Consult the API source-code to see how things work together!

println(o): String.valueOf(o);

String.valueOf(o): return (o == null) ? ”null” : o.toString();

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Accessing Overridden Method/Field Polymorphism

The keyword super allows to explicitly address the super class.

The keyword this allows to explicitly address the actual class.

1 p u b l i c c l a s s Person {
2 . . .
3 p u b l i c S t r i n g t o S t r i n g () {
4 r e t u r n ” I am a pe r son and my name i s ” + name ;
5 }
6 }
7 p u b l i c c l a s s Student extends Person {
8 . . .
9 p u b l i c S t r i n g t o S t r i n g () {

10 r e t u r n super . t o S t r i n g () + ” . I s tudy ” + t o p i c ;
11 }
12 }

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Accessing Constructors Polymorphism

The keyword super allows to explicitly address the super class.
The keyword this allows to explicitly address the actual class.

1 p u b l i c c l a s s Person {
2 . . .
3 p u b l i c Person (S t r i n g name) { // d e f a u l t i s woman
4 this . name = name ;
5 }
6 p u b l i c Person (S t r i n g name , boolean man) {
7 this(name) ; // FIRST STATEMENT!
8 this . man = man ;
9 }

10 }
11 p u b l i c c l a s s Student extends Person {
12 . . .
13 p u b l i c Student (S t r i n g name , boolean man , S t r i n g t) {
14 super(name , man) ; // FIRST STATEMENT!
15 t h i s . t o p i c = t ; // t h i s i s o p t i o n a l
16 }
17 }

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Implicit Casting Polymorphism

Upcasting of a reference type is using a more general type.

When an object reference is upcast, you can invoke only those methods
declared by the more general type.

On primitive types implicit casting is done for widening the type.

1 // Upcas t i ng an ob j e c t o f type Student :
2 Student s = new Student (. . .) ;
3 Person p = s ; // Person i s more g e n e r a l than Student
4 Object o = p ; // Object i s more g e n e r a l than Person
5
6 // Widening a p r i m i t i v e i n t e g e r v a l u e :
7 i n t i = 5 ;
8 double d = i ; // doub l e i s more g e n e r a l than i n t

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Explicit Casting Polymorphism

Downcasting of a reference type is using a more specific type.

On primitive types explicit casting is necessary for narrowing.

1 // Downcast ing an ob j e c t o f type Student :
2 Object o = new Student (. . .) ;
3 Person p = (Person) o ; // Person i s more s p e c i f i c
4 Student s = (Student) p ; // Student i s more s p e c i f i c
5
6 // Narrowing a p r i m i t i v e doub l e v a l u e :
7 double d = 5 ;
8 i n t i = (i n t) d ; // i n t i s more s p e c i f i c

Error will occur if o is not of type Student (ClassCastException).

Data will be lost if d is a decimal number or out of the range of int.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Explicit Casting Polymorphism

Sometimes losing data is desirable.

Generate a random int x ∈ {0, 1, . . . , 9}.
Math.random() produces a double value x ∈ [0, 1).

1 // i n t i = floor(x) f o r some random x ∈ [0, 10)
2 i n t i = (i n t) (Math . random () ∗ 10) ;

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Abstract Classes Polymorphism

Abstract classes are classes designed solely for subclassing.
They can not be instantiated.
They implement common sets of behavior, which are then shared by
the concrete (instantiable) classes you derive from them.
You declare a class as abstract with the abstract modifier:

1 p u b l i c a b s t r a c t c l a s s F i gu r e {
2 protected double x , y . . .

Abstract methods are methods with no body.
They declare the method signature and return type.
It is a dummy method for implementation of specific behavior.
Classes which contain abstract methods must also be abstract.
Instantiable subclasses provide implementations for abstract methods.

If a subclass does not provide implementations for all the abstract
methods, then it must also be abstract (and it is not instantiable).

You declare a method as abstract with the abstract modifier and a
semicolon terminator:

1 p u b l i c a b s t r a c t double getArea () ;

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Interfaces – Like Driving a Car Polymorphism

Do you have a driving license?

Do you want to make a new driving license for each car?

No, because there is a common interface.

You do not need to know how the engine works to drive a car.

However, the car must be able to perform certain operations:

Go forward.
Slowdown/stop (break light).
Go in reverse.
Turn left (signal light).
Turn right (signal light).
...

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Interfaces Polymorphism

Interfaces define method signatures and return types.

They do not provide any behavior/implementation.

Similar to abstract methods in abstract classes.

An interface serves as a “contract” defining a set of capabilities
through method signatures and return types.

By implementing the interface, a class “advertises” that it provides
the functionality required by the interface, and agrees to follow that
contract for interaction.

Interfaces are important for Encapsulation and Modularity.

Assume you need a sequence of unknown length (java.util.List).
It does not matter how it is implemented as long as it provides the
necessary functionality.
You can exchange the implementation at any time.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Defining a Java Interface Polymorphism

Use the interface keyword to define an interface in Java.

Naming convention is the same as for classes.
Interfaces contain definitions of abstract methods. E.g.:

1 p u b l i c i n t e r f a c e Shape {
2 double getArea () ;
3 double g e tPe r ime t e r () ;
4 }

Methods declared by an interface are implicitly public abstract.

You can omit either or both.
You must put a semicolon at the end.

Interface might also declare and initialize public static final fields.

You can omit any or all of the public, static, and final keywords.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Implementing a Java Interface Polymorphism

Use the implements keyword followed by the name. E.g.:

1 p u b l i c c l a s s C i r c l e implements Shape { . . .
2 p u b l i c double getArea () { . . .

Abstract classes may (not) implement inherited abstract methods:

1 p u b l i c a b s t r a c t c l a s s F i gu r e implements Shape { . . .

A Java class can implement as many interfaces as needed:

1 p u b l i c c l a s s Co l o r C i r c l e implements Shape , Co lo r { . . .
2 p u b l i c double getArea () { . . .
3 p u b l i c ColorRGB ge tCo l o r () { . . .

A Java class can extend a base class and implement some interfaces:

1 p u b l i c c l a s s Co l o r C i r c l e extends F i gu r e implements Co lo r {

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Example Class Diagram Polymorphism

Italic means abstract −→

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Interface/Abstract Class & PolymorphismPolymorphism

Every interface and every abstract class defines a type.

Objects that implement an interface (extend an abstract class) can be
assigned to reference variables typed to the interface (abstract class):

1 p u b l i c c l a s s Co l o r C i r c l e extends F i gu r e implements Co lo r {

1 C o l o r C i r c l e cc = new Co l o r C i r c l e (. . .) ;
2 F i gu r e f = cc ;
3 Co lo r c = cc ;

Casting is the same as for “normal” classes.

When an object reference is upcast, you can invoke only those
methods declared by the interface / abstract class.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Abstract Classes vs. Interfaces Polymorphism

Abstract class Interface
Fields that are not static and final Fields are public, static, and final

Abstract and concrete methods Only abstract methods

Any access modifier Only public methods

You can extend only one class Implement any number of interfaces

Which should you use?

Consider using an abstract class in the following situations:

Sharing code among several closely related classes.
Classes that extend your abstract class have common behavior or data.

Consider using an interfaces in the following situations:

You expect that unrelated classes would implement your interface.
You want to specify the behavior of a particular data type, but not
concerned about who implements its behavior.
You want to take advantage of multiple inheritance of type.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

The instanceof Operator Polymorphism

Remember downcasting of a reference type to a more specific type:

1 Object o ;
2 . . .
3 Person p = (Person) o ; // Person i s more s p e c i f i c
4 Student s = (Student) p ; // Student i s more s p e c i f i c

Error will occur if o is not of type Student (ClassCastException).

Use instanceof operator to test if an object is of a specific type:

1 i f (o i n s t a n c e o f Person) {
2 System . out . p r i n t l n (”Object i s o f type Person ”) ;
3 }
4 i f (o i n s t a n c e o f Student) {
5 Student s = (Student) o ;
6 . . .

The instanceof operator works for classes, abstract classes, interfaces.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Object Equivalence Polymorphism

java.lang.Object class provides an equals() method.

Default behavior: Test for reference equality.

E.g. two circles of same radius and same color at the same position.

Override equals() to determine if two objects are equivalent.

But be careful. The equality test must preserve the following
properties:

Symmetry: a.equals(b) if and only if b.equals(a),
Reflexivity: a.equals(a),
Transitivity: if a.equals(b) and b.equals(c) then a.equals(c),
Consistency with hashCode(): Two equal objects must have the
same hashCode() value.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Exercise

Create a model and write a Java program to simulate an ecosystem.

March 19th: Release at the Moodle page.
March 26th: Discussion of your model and implementation strategy.
April 14th: Submission deadline.

See the guidance for this exercise on the Moodle page.

GC, Packages, Polymorphism – Practical Software Technology Alexander.Baumgartner@risc.jku.at

	Garbage Collector
	Packages
	Polymorphism

