N2

326.041 (2015S) — Practical Software Technology

(Praktische Softwaretechnologie)
Object Oriented Programming

Alexander Baumgartner
Alexander.Baumgartner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Non-Structured Programming History of Paradigms g?

Earliest programming paradigm capable of creating Turing-complete
(computationally universal) algorithms.

Figure: Analytical Engine, 1837, Charles Babbage

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Non-Structured Programming {F

Earliest programming paradigm capable of creating Turing-complete
(computationally universal) algorithms.

(]

o Global data.
@ Only one main program.
o Program flow branching by command GOTO.

50 IF X<>0 THEN GOTO 100
100 PRINT X
101 GOTO 25

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Non-Structured Programming <§

o Edsger Dijkstra, 1968, Go To Statement Considered Harmful.

o William W. Cobern, Programming Language Choice: A Positive albeit
Ambiguous Case for BASIC Programming in Secondary Science
Teaching. He writes:

e BASIC is not a structured language like Pascal and using it fosters
poor programming habits that are very difficult to break,

o there is no "ease of learning” advantage that would favor the use of
BASIC over Pascal with introductory students.

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Block-Structured Programming History of Paradigms < E

o Global data.

@ Only one main program. T
statement statement statement
][] | [

@ Program flow is controlled
statement H
by program structures. I—;—‘ & 3

o if-then-else
o while

Figure: Program flow by structures.

if x<>0 then begin
end;
else begin

end ;

O~NOOG AN

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Procedural Programming g?

@ Program code is wrapped into funcional substructures (the
procedures).

o Data is either global or local to a particular procedure.

o Data is passed among procedures as arguments.

o Data structure definitions are separated from the algorithmic
program codes.

@ Any given procedure might be called at any point during a program'’s
execution, including by other procedures or itself.

int Fact(int n) {
if (n=0)
return 1;
return n x Fact(n — 1);

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Procedural Programming g?

@ Poor modeling of the real world:
o Procedures to carry out tasks.
o Data (structures) to store information.
o Real world objects might do both.
o E.g. A thermostat control program:
o 2 procedures: heating_on() and heating_off().
o 2 global variables: currentTemp and desired Temp.
o Crude organizational units:
o The above procedures and variables do not form a programming unit,
which you could call thermostat.

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Modular programming {F

Separating the functionality of a program into independent,
interchangeable modules.

(]

o Algorithms and their dependent data are wrapped into modules.
@ The interfaces of the modules are well defined.
o E.g.: Modula, Java, Haskell,. ..

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

7\

Independent paradigms L

Object oriented programming.
Functional programming.
Logic programming.

Literate programming.

e 6 6 o o

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

7\

Early OO Languages e

o Simula 67: First OO language. By Dahl and Nygaard in the 60s.
o Derived from Algo 60.
o Uses classes and inheritance.
o Methods/behaviors have not been bound strictly to the objects yet.

o Smalltalk: First consequent OO language. By Kay et al. in the 70s.

Influenced by Simula.

Everything is an object.

Already a development tool with GUL.

Is still used at present.

It had a strong influence for many other OO languages.

© 6 6 o o

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Definition of OO? 87

There is no accurate definition which is accepted by everyone.

o Nygaard (1926-2002), one of the developers of Simula 67, says:

o A program execution is regarded as a physical model simulating the
behavior of either a real or imaginary part of the world.

o Kay, one of the developers of Smalltalk, requires the following
essential elements for an OO language:

Polymorphism.

Data encapsulation.

Inheritance.

Every type is an object type.

The object types compose a hierarchy with a single root.

(4]

© © o o

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

:)
Objects oy

Grady Booch. Object-Oriented Analysis and Design with Applications:
An Object has state, behavior and identity.

o State = Data.
o Behavior = Algorithms which use the data.

o Identity = Distinguishably from other objects.

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Object Based Programming 7N,

@ The global state of a program consists of (the states of) numerous
objects.

@ Objects interact with each other via messages.
o Messages are realized as procedure/method calls, e.g.:.

w_n

o sending message “m" to object “0" =
calling procedure “m” of object “0".

o Procedure “m” is able to modify directly the state of the objects “0”
or to send another message to another object.

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Object-Oriented Design 87

o Abstraction:

o Distill a complicated system down to its most fundamental parts.
o Describing parts of a system by naming them and explaining their
functionality. (In Java: Interfaces and abstract classes.)
o Forces encapsulation and enables modularity.
o Flexibility & Adaptability: Implementations are interchangeable.
o Modularity:
o Programs are divided into separate functional units.
o Robustness: Test and debug separate components before integrating
them into a larger software system.
o Reusability: Same components are used in several software system.
o Encapsulation:
o Components should not reveal implementation details.
o Robustness & Adaptability: Allows changing implementation without
adversely affecting other parts = Fix bugs, improve implementation
(e.g. performance), or add new functionality by local changes.

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Example for Objects —i .

squareContainer

‘) qu : int[]

" e
P init()
4 int getSquare(i : int)

main .

squareContainer -=[‘)
printValues () {

for(i=1;i<=10;i++) {

main() ‘ L
"] ...squareContainer.getSquare (i) ...

printValues() =——"
sayGoodbye()

The two objects main and squareContainer.

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

7\

Encapsulation e

@ Accessing to the field “squareContainer.qu” from outside (e.g.: from
method “main”) is not possible/desirable.

@ Accessing (changing/reading values) to the fields of an object is done
typically though designated access points (public methods).

o Advantages:

o avoiding side effects,
o clear structures (storing the data and their algorithms together),
o controlling the modification of the data, etc.

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Object Oriented Programming g?

o Typing: Objects belong to classes. Within a class each object has

o the same data fields and
o the same behavior (same methods).

o Inheritance: A class may inherit the data and behavior of (an)other
class(es).

o Polymorphism: The same piece of program/function can work on
different kind of objects.

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Example for Class and Objects —i%

Circle
x: double
y: double
r: double

translate (dx:double, dy:double)
area(): double

<<instances> <<instances>
B

" 1
1 L
unitCircle anotherCircle
Xx=0.0 x=1.2
y=0.0 y=-23
r=10 r=50

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Example for inheritance 2N,

Figure

x: double
y: double

translate (dx:double,dy:double)

7

Rectangle Circle

h: double r: double

w: double diameter(): double

diagonal () : double A

) |
<<instances= l<<11 stance>> <<instances>>] ssix stances>>
o L P | e ey
1 1 1 1
rect1 rect2 cirel circ2

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Example for Polymorphism 87

public static void main(String[] args) {
Figure f;
Rectangle r = ...;
Circle ¢ = ...;

f =vr; /J/ Allowed, Rectangle is subclass of Figure
f =c¢; /J/ Allowed, Circle is subclass of Figure

r =c; // Not allowed
r=1; // Not allowed

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Influence of Polymorphism

public static void maln(Strlng[] args) {
Rectangle r = ...;

Circle ¢ = ...;

diagTranslate(r, 1.0);
diagTranslate(c, 2.0);
}

f.translate(d, d);

}

public static void diagTranslate(Figure f,

double d) {

Object Oriented Programming — Practical Software Technology

Alexander.Baumgartner@risc.jku.at

Dynamic/Late Binding |

Shape

printYourName ()

A

Rectangle

printYourName ()

Object Oriented Programming — Practical Software Technology

Circle

printYourName ()

Alexander.Baumgartner@risc.jku.at

Dynamic/Late Binding | £

Shape

printYourName () {
printyYourName () 1_— | print("I'm a shape");

4 }

Rectangle Circle
printYourName (> printYourName())
AN
printYourName () { printYourName () {
print ("I'm a Rectangle"); print("I‘'m a Circle");
))

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

Dynamic/Late Binding I £ 5

o
Shape printYourNameTwice () {
this.printYourName () ;
inty N
printYourName () f this.printYourName () ;
printYourNameTwice () o)
Rectangle Circle
printY¥ourName () printY¥ourName ()

Object Oriented Programming — Practical Software Technology Alexander.Baumgartner@risc.jku.at

	History of Paradigms
	Object Oriented Design

