
326.041 (2015S) – Practical Software Technology
(Praktische Softwaretechnologie)
Object Oriented Programming

Alexander Baumgartner
Alexander.Baumgartner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Non-Structured Programming History of Paradigms

Earliest programming paradigm capable of creating Turing-complete
(computationally universal) algorithms.

Figure: Analytical Engine, 1837, Charles Babbage

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Non-Structured Programming History of Paradigms

Earliest programming paradigm capable of creating Turing-complete
(computationally universal) algorithms.

Global data.

Only one main program.

Program flow branching by command GOTO.

1 . . .
2 50 IF X<>0 THEN GOTO 100
3 . . .
4 100 PRINT X
5 101 GOTO 25
6 . . . Unstructured code (e.g. early BASIC).

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Non-Structured Programming History of Paradigms

Edsger Dijkstra, 1968, Go To Statement Considered Harmful.

William W. Cobern, Programming Language Choice: A Positive albeit
Ambiguous Case for BASIC Programming in Secondary Science
Teaching. He writes:

BASIC is not a structured language like Pascal and using it fosters
poor programming habits that are very difficult to break,
there is no ”ease of learning” advantage that would favor the use of
BASIC over Pascal with introductory students.

. . .

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Block-Structured Programming History of Paradigms

Global data.

Only one main program.

Program flow is controlled
by program structures.

if-then-else
while Figure: Program flow by structures.

1 . . .
2 i f x<>0 then beg in
3 . . .
4 end ;
5 e l s e beg in
6 . . .
7 end ;
8 . . . Structured code (e.g. simple Pascal program).

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Procedural Programming History of Paradigms

Program code is wrapped into funcional substructures (the
procedures).

Data is either global or local to a particular procedure.

Data is passed among procedures as arguments.

Data structure definitions are separated from the algorithmic
program codes.

Any given procedure might be called at any point during a program’s
execution, including by other procedures or itself.

1 i n t Fact (i n t n) {
2 i f (n = 0)
3 r e t u r n 1 ;
4 r e t u r n n ∗ Fact (n − 1) ;
5 } Procedural code – A procedur to compute the factorial.

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Procedural Programming History of Paradigms

Poor modeling of the real world:

Procedures to carry out tasks.
Data (structures) to store information.
Real world objects might do both.

E.g. A thermostat control program:

2 procedures: heating on() and heating off().
2 global variables: currentTemp and desiredTemp.

Crude organizational units:

The above procedures and variables do not form a programming unit,
which you could call thermostat.

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Modular programming History of Paradigms

Separating the functionality of a program into independent,
interchangeable modules.

Algorithms and their dependent data are wrapped into modules.

The interfaces of the modules are well defined.

E.g.: Modula, Java, Haskell,. . .

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Independent paradigms History of Paradigms

Object oriented programming.

Functional programming.

Logic programming.

Literate programming.

. . .

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Early OO Languages Object Oriented Design

Simula 67: First OO language. By Dahl and Nygaard in the 60s.

Derived from Algo 60.
Uses classes and inheritance.
Methods/behaviors have not been bound strictly to the objects yet.

Smalltalk: First consequent OO language. By Kay et al. in the 70s.

Influenced by Simula.
Everything is an object.
Already a development tool with GUI.
Is still used at present.
It had a strong influence for many other OO languages.

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Definition of OO? Object Oriented Design

There is no accurate definition which is accepted by everyone.

Nygaard (1926-2002), one of the developers of Simula 67, says:

A program execution is regarded as a physical model simulating the
behavior of either a real or imaginary part of the world.

Kay, one of the developers of Smalltalk, requires the following
essential elements for an OO language:

Polymorphism.
Data encapsulation.
Inheritance.
Every type is an object type.
The object types compose a hierarchy with a single root.

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Objects Object Oriented Design

Grady Booch. Object-Oriented Analysis and Design with Applications:
An Object has state, behavior and identity.

State = Data.

Behavior = Algorithms which use the data.

Identity = Distinguishably from other objects.

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Object Based Programming Object Oriented Design

The global state of a program consists of (the states of) numerous
objects.

Objects interact with each other via messages.

Messages are realized as procedure/method calls, e.g.:.

sending message “m” to object “o” =
calling procedure “m” of object “o”.
Procedure “m” is able to modify directly the state of the objects “o”
or to send another message to another object.

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Object-Oriented Design Object Oriented Design

Abstraction:

Distill a complicated system down to its most fundamental parts.
Describing parts of a system by naming them and explaining their
functionality. (In Java: Interfaces and abstract classes.)
Forces encapsulation and enables modularity.
Flexibility & Adaptability: Implementations are interchangeable.

Modularity:

Programs are divided into separate functional units.
Robustness: Test and debug separate components before integrating
them into a larger software system.
Reusability: Same components are used in several software system.

Encapsulation:

Components should not reveal implementation details.
Robustness & Adaptability: Allows changing implementation without
adversely affecting other parts =⇒ Fix bugs, improve implementation
(e.g. performance), or add new functionality by local changes.

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Example for Objects Object Oriented Design

Figure: The two objects main and squareContainer.

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Encapsulation Object Oriented Design

Accessing to the field “squareContainer.qu” from outside (e.g.: from
method “main”) is not possible/desirable.

Accessing (changing/reading values) to the fields of an object is done
typically though designated access points (public methods).

Advantages:
avoiding side effects,
clear structures (storing the data and their algorithms together),
controlling the modification of the data, etc.

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Object Oriented Programming Object Oriented Design

Typing: Objects belong to classes. Within a class each object has

the same data fields and
the same behavior (same methods).

Inheritance: A class may inherit the data and behavior of (an)other
class(es).

Polymorphism: The same piece of program/function can work on
different kind of objects.

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Example for Class and Objects Object Oriented Design

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Example for inheritance Object Oriented Design

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Example for Polymorphism Object Oriented Design

1 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
2 F i gu r e f ;
3 Rec tang l e r = . . . ;
4 C i r c l e c = . . . ;
5
6 f = r ; // Al lowed , Rec tang l e i s s u b c l a s s o f F i gu r e
7 f = c ; // Al lowed , C i r c l e i s s u b c l a s s o f F i gu r e
8
9 r = c ; // Not a l l owed

10 r = f ; // Not a l l owed
11 } Polymorphism – Implicit upcasting.

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Influence of Polymorphism Object Oriented Design

1 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
2 Rec tang l e r = . . . ;
3 C i r c l e c = . . . ;
4
5 d i a gT r a n s l a t e (r , 1 . 0) ;
6 d i a gT r a n s l a t e (c , 2 . 0) ;
7 }
8
9 p u b l i c s t a t i c vo id d i a gT r a n s l a t e (F i gu r e f , double d) {

10 f . t r a n s l a t e (d , d) ;
11 } Diagonal translate a Figure.

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Dynamic/Late Binding I Object Oriented Design

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Dynamic/Late Binding I Object Oriented Design

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

Dynamic/Late Binding II Object Oriented Design

Object Oriented Programming – Practical Software Technology Alexander.Baumgartner@risc.jku.at

	History of Paradigms
	Object Oriented Design

