

Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.uni-linz.ac.at

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

1/24

Process Commitments

When can a reaction $P|Q \rightarrow P'|Q'$ occur?

- $CCS: P|Q = (\cdots + a.P')|(\cdots + \bar{a}.Q')$
 - Transitions $P \stackrel{a}{\rightarrow} P'$ and $Q \stackrel{\bar{a}}{\rightarrow} Q'$ are necessary.
 - $P \stackrel{\alpha}{\to} P' \dots$ "commitment" of P to take part in a reaction involving α .
 - Residue of reaction is P'|Q'.
- π -Calculus: $P|Q = (\cdots + x(\vec{y}).P')|(\cdots + \bar{x}\langle \vec{z}\rangle.Q')$
 - Commitments $P \stackrel{x}{\rightarrow} (\vec{y}).P'$ and $Q \stackrel{\bar{x}}{\rightarrow} \langle \vec{z} \rangle.Q'$ are necessary.
 - Abstraction $(\vec{y}).P'$, concretion $(\vec{z}).Q'$.
 - Residue of reaction is $(\vec{y}).P'@\langle\vec{z}\rangle.Q' = \{\vec{z}/\vec{y}\}P'|Q'.$
 - **F**@C is the application of an abstraction F and a concretion C.

Revise transition rules of CCS to commitment rules of the π -calculus.

1. Strong Equivalence

- 2. Observation Equivalence
- 3. Extensions of the π -Calculus

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

2/24

Abstractions and Concretions

- Abstraction: $(\vec{x}).P$
 - Bound names \vec{x} , process part P.
 - If $|\vec{x}| = n$, then the abstraction has arity n.
 - Two abstractions F and G are structurally congruent ($F \equiv G$), if they have same arity and, up to alpha-conversion of the bound names, their process parts are structurally congruent.
- **Concretion:** new $\vec{x} \langle \vec{y} \rangle . P$
 - Restricted names \vec{x} , prefix new $\vec{x} \langle \vec{y} \rangle$, process part P.
 - If $|\vec{y}| = n$, then the concretion has arity n.
 - Two concretions C and D are structurally congruent ($C \equiv D$), if they have the same arity and, up to alpha-conversion and re-ordering of the restricted names, their prefixes are identical and their process parts are structurally congruent.

Concretions may include restrictions to keep names secret between the receiver of a message and (the residue of) the sender.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 3/24 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 4/24

Agents

- Agent: an abstraction or a concretion.
 - Every process is an abstraction and a concretization of arity 0.
 - Every process is thus an agent.
- Generalized Summation: $\sum_{i \in I} \alpha_i A_i$
 - $\alpha_i A_i$ has form xF, $\bar{x}C$, or τP .
 - Output action may include a restriction.
 - Example: $\bar{x}(\text{new } y_1 \langle y_1 y_2 \rangle.P)$
- Generalized Reaction Rule:

REACT
$$(xF + M)|(\bar{x}C + N) \rightarrow F@C$$

- Application F@C yields a process: $(\vec{x}).P @ \text{new } \vec{z}(\vec{v}).Q := \text{new } \vec{z}(\{\vec{v}/\vec{x}\}P|Q)$
 - $|\vec{x}| = |\vec{y}|$
 - \vec{z} not free in $(\vec{x}).P$.

The commitment rules operate on agents.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

5/24

Commitment Rules

Commitment Relation $\stackrel{\alpha}{\to}$: Set of those commitments that can be inferred from the following rules, together with alpha-conversion (where α is either a label or τ):

SUM_c
$$M + \alpha A + N \stackrel{\alpha}{\to} A$$

L-REACT_c $P \stackrel{\times}{\to} F Q \stackrel{\overline{\to}}{\to} C$
 $P|Q \stackrel{\tau}{\to} F@C$

R-REACT_c $P|Q \stackrel{\tau}{\to} F@C$

R-PAR_c $P|Q \stackrel{\alpha}{\to} A|Q$

RES_c $P|Q \stackrel{\alpha}{\to} A|Q$

Generalized Process Operations

Agents (new z A) and A|Q of same kind and arity as agent A.

- Generalized Restriction:
 - We assume $z \notin \vec{x}$.
 - new $z((\vec{x}).P) := (\vec{x}).$ new z P
 - new z (new \vec{x} $\langle \vec{y} \rangle . P$) := $\begin{cases} \text{new } z\vec{x} \ \langle \vec{y} \rangle . P & \text{if } z \in \vec{y} \\ \text{new } \vec{x} \ \langle \vec{y} \rangle . \text{new } z \ P & \text{otherwise} \end{cases}$
- Generalized Composition:

We assume $z \notin \vec{x}$ and \vec{x} not free in Q.

- $((\vec{x}).P)|Q := (\vec{x}).(P|Q)$
- $(\text{new } \vec{x} \ \langle \vec{y} \rangle.P)|Q := \text{new } \vec{x} \ \langle \vec{y} \rangle.(P|Q)$
- Structural Congruences:
 - $A|(P|Q) \equiv (A|P)|Q$
 - new $x(A|Q) \equiv \begin{cases} A \mid \text{new } x \mid Q & (x \text{ not free in } A) \\ \text{new } x \mid A \mid Q & (x \text{ not free in } Q) \end{cases}$
 - $(F|P)@(C|Q) \equiv (F@C)|P|Q$
 - new x (F@C) \equiv $\begin{cases} F@\text{new } x \ C \quad (x \text{ not free in } F) \\ \text{new } x \ F@C \quad (x \text{ not free in } C) \\ \text{http://www.risc.uni-linz.ac.at} \end{cases}$

Wolfgang Schreiner

6/24

Relationships

- Structural Congruence Respects Commitment: If $P \xrightarrow{\alpha} A$ and $P \equiv Q$, then there exists some B such that $Q \xrightarrow{\alpha} B$ and $A \equiv B$.
 - Structurally congruent processes have the same commitments.
- Reaction Agrees with τ -Commitment: $P \to P'$ if and only if there exists some P'' such that $P \xrightarrow{\tau} P''$ and $P'' \equiv P'$.
 - \rightarrow corresponds to the silent commitment $\stackrel{\tau}{\rightarrow}$ (modulo congruence).

Analogous to the relationships in CCS.

Agent Congruence

- **Agent congruence:** An equivalence relation \simeq on agents is an agent congruence, if the following holds:
 - 1. If $A \simeq B$, then $\alpha A + M \simeq \alpha B + M$ (for any process M)
 - 2. If $P \simeq Q$, then new $AP \simeq \text{new } AQ$, $P|R \simeq Q|R$, $R|P \simeq R|Q$. $!P \simeq !Q$, new $\vec{x}(\vec{v}).P \simeq \text{new } \vec{x}(\vec{v}).Q$.
 - 3. If $\{\vec{y}/\vec{x}\}P \simeq \{\vec{y}/\vec{x}\}Q$ for all \vec{y} , then $(\vec{x}).P \simeq (\vec{x}).Q$.

The notion is more complex than process congruence, because messages may be passed in reactions.

Wolfgang Schreiner

9/24

Agent Relations

Extend relations on processes to relations on agents.

- Application of process relation to abstractions resp. concretions:
 - Assume binary relation S on processes, abstractions F, G. concretions C.D.
 - *FSG*:

 $F(\vec{v})SG(\vec{v})$, for all \vec{v} .

CSD:

PSQ, for some processes P and Q and \vec{z}, \vec{v} such that $C \equiv \text{new } \vec{z} \langle \vec{v} \rangle.P \text{ and } D \equiv \text{new } \vec{z} \langle \vec{v} \rangle.Q.$

Abstractions are only related, if all their instantiations are related!

http://www.risc.uni-linz.ac.at

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

10/24

Strong Equivalence

- **Strong simulation:** A binary relation S on processes is a strong simulation, if PSQ implies
 - if $P \stackrel{\alpha}{\to} A$, then there exists some B such that $Q \stackrel{\alpha}{\to} B$ and ASB.
- **Strong bisimulation**: A binary relation S on processes is a strong bisimulation, if both S and its converse are a strong simulation.
- Strong equivalence: Two agents A and B are strongly equivalent, written $A \sim B$, if ASB, for some strong bisimulation S.
- Theorem: strong equivalence \sim is an agent congruence.
 - Not a general congruence.
 - P $\simeq Q$ does not imply $z(y).P \simeq z(y).Q$:
 - $\bar{x}|y \sim \bar{x}.y + y.\bar{x}$.
 - $| \{x/y\}\bar{x}|y \not\sim \{x/y\}\bar{x}.y + y.\bar{x}.$

Basic Properties of Replication

Strong equivalence does not imply structural congruence.

- Propositions:
 - $|P| \sim |P| |P|$
 - $| IP \sim IP$
 - But $!P \not\equiv !P|!P$ and $!!P \not\equiv !P$.
- **Definition:** An agent A is *negative* on x, if its only free occurrences of x are in the form $\bar{x}C$.
 - Cannot receive messages on x or transmit x as a message.
 - If P is negative and $P \stackrel{\alpha}{\to} A$, then A is negative on x.
- Theorems: Let P, P_1, P_2, F be negative on x.
 - 1. new x ($P_1 \mid P_2 \mid !xF$) \sim new x ($P_1 \mid !xF$) | new x ($P_2 \mid !xF$)
 2. new x ($!P \mid !xF$) \sim !new x ($P \mid !xF$)
 - - P_1 and P_2 cannot communicate on x.
 - new x (|x|) = |x| can be pushed inside composition and replication.

- 1. Strong Equivalence
- 2. Observation Equivalence
- 3. Extensions of the π -Calculus

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

13/24

Weak Simulations

- Weak Simulation: a binary relation S on processes is a weak simulation if, whenever PSQ, then:
 - if $P \Rightarrow P'$, then there exists Q' such that $Q \Rightarrow Q'$ and P'SQ';
 - if $P \stackrel{\times \langle \vec{y} \rangle}{\Rightarrow} P'$, then there exists Q' such that $Q \stackrel{\times \langle \vec{y} \rangle}{\Rightarrow} Q'$, and P'SQ';
 - if $P \stackrel{\bar{X}}{\Rightarrow} C$, then there exists D such that $Q \stackrel{\bar{X}}{\Rightarrow} D$ and CSD.
- **Proposition:** a binary relation S on processes is a weak simulation if, whenever PSQ, then:
 - if $P \to P'$, then there exists Q' such that $Q \Rightarrow Q'$ and P'SQ';
 - if $P \stackrel{\times \langle \vec{y} \rangle}{\to} P'$, then there exists Q' such that $Q \stackrel{\times \langle \vec{y} \rangle}{\to} Q'$, and P'SQ';
 - if $P \stackrel{\bar{X}}{\rightarrow} C$, then there exists D such that $Q \stackrel{\bar{X}}{\Rightarrow} D$ and CSD.

To establish that $\mathcal S$ is a weak simulation, it is only necessary to check single transitions.

Experiments

In CCS, an atomic experiment to distinguish process expressions is represented by the relation $\stackrel{\lambda}{\Rightarrow}$ ($\lambda \in \{a, \bar{a}\}$, for some action a).

- Transition relation $\overset{\times \langle \vec{y} \rangle}{\rightarrow}$: $P \overset{\times \langle \vec{y} \rangle}{\rightarrow} P' \text{ iff, for some } F. P \overset{\times}{\rightarrow} F \text{ and } F \langle \vec{y} \rangle \equiv P'.$
- Transition relation $\stackrel{x\langle \vec{y} \rangle}{\Rightarrow}$ (the atomic input experiments):

$$P \stackrel{\times \langle \vec{y} \rangle}{\Rightarrow} P'$$
 iff, for some $P_0, P_1, P \Rightarrow P_0 \stackrel{\times \langle \vec{y} \rangle}{\rightarrow} P_1 \Rightarrow P'$

■ Transition relation $\stackrel{\bar{X}}{\Rightarrow}$ (the atomic output experiments):

$$P \stackrel{\bar{\lambda}}{\Rightarrow} \text{ new } \vec{z} \ \langle \vec{y} \rangle . P' \text{ if, for some } P_0, P'', \\ P \Rightarrow P_0 \stackrel{\bar{\lambda}}{\Rightarrow} \text{ new } \vec{z} \ \langle \vec{y} \rangle . P'', \text{ and } P'' \Rightarrow P'.$$

Two relations required for capturing input and output experiments.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

14/24

Observation Equivalence

- Weak Bisimulation: a binary relation S on processes is a weak bisimulation, if both S and its converse are weak simulations.
- **Observation Equivalence:** two agents A and B are observation equivalent, written $A \simeq B$, if ASB, for some weak bisimulation S.
- Propositions:
 - $P \sim Q$ implies $P \simeq Q$
 - $P \simeq \tau.P$
- Theorem: observation equivalence is an agent congruence.

Processes are not observationally equivalent only if they can be distinguished by some input or output experiment.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 15/24 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 16/24

Unique Solution of Equations

■ Theorem: Let $\vec{X} = X_1, X_2, \ldots$ be a (possibly infinite) sequence of variables over abstractions and let \vec{F} and \vec{G} be two solutions of the system of equations

$$X_1(\vec{x}_1) \simeq \alpha_{11}A_{11} + \dots + \alpha_{1n_1}A_{1n_1} X_2(\vec{x}_2) \simeq \alpha_{21}A_{21} + \dots + \alpha_{2n_2}A_{2n_2}$$

where each term αA on the right sides takes one of the forms

- xH where H is an abstraction $(\vec{v}).X_k\langle\vec{w}\rangle$
- $\bar{x} C$ where C is a concretion new $\vec{u} \langle \vec{v} \rangle . X_k \langle \vec{w} \rangle$

Then $F_i \simeq G_i$, for all i.

A system of agents is uniquely (up to observation equivalence) defined by a mutually recursive set of agent equations.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

17/24

A Type System for the π -Calculus

 $Control_1 := \overline{lose_1} \langle talk_2, switch_2 \rangle . \overline{gain_2} \langle talk_2, switch_2 \rangle . Control_2.$ $Control_2 := \overline{lose_2} \langle talk_1, switch_1 \rangle . \overline{gain_1} \langle talk_1, switch_1 \rangle . Control_1.$

Trans $\langle talk_2, switch_2, gain_2, lose_2 \rangle = talk_2. Trans \langle talk_2, switch_2, gain_2, lose_2 \rangle + lose_2(t, s). \overline{switch_2} \langle t, s \rangle. Idtrans \langle gain_2, lose_2 \rangle.$

- Channel type $lose_1$: CHAN (τ, σ)
 - Output action $\overline{lose_1}\langle talk_2, switch_2 \rangle$
 - Message types $talk_2 : \tau$, $switch_2 : \sigma$
- Channel type *switch*₂ : CHAN (τ, σ)
 - Output action $\overline{switch_2}\langle talk_1, switch_1 \rangle$
 - Message types $talk_1 : \tau$, $switch_1 : \sigma$
- Consequence $\sigma = \text{CHAN}(\tau, \sigma)$
 - A channel may carry messages of its own type.

No hierarchy of channel types possible, we need another approach.

- 1. Strong Equivalence
- 2. Observation Equivalence
- 3. Extensions of the π -Calculus

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

18/24

Sorts

- \blacksquare Collection of sorts Σ
 - $x : \sigma \dots$ to name x, sort σ is assigned.
 - To every name, a sort is assigned.
 - Every sort is assigned to infinitely many names.
- Set of sort lists Σ^*
 - $\vec{x}: \vec{\sigma}$... to name sequence \vec{x} , sort list $\vec{\sigma}$ is assigned.
 - $\vec{x} = x_1, \ldots, x_n, \vec{\sigma} = \sigma_1, \ldots, \sigma_n.$
 - $x_i : \sigma_i, 1 \leq i \leq n.$
 - **F** : σ̄
 - Abstraction $F = (\vec{x})P$
 - $\vec{x}:\vec{\sigma}$

Sorts shall ensure that names are used properly by processes.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 19/24 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 20/24

Sortings

Take a set Σ of sorts.

- A sorting $ob : \Sigma \to \Sigma^*$ over Σ :
 - Partial function mapping sorts to sort sequences.
- A process (family) respects a sorting ob:
 - For every subterm $x(\vec{y}).P$ or $\bar{x}(\vec{y}).P$ of the process (family):
 - if $x : \sigma$, then $\vec{v} : ob(\sigma)$.
- **Example:** $\Sigma = \{\text{TALK}, \text{SWITCH}, \text{GAIN}, \text{LOSE}\}$
 - talk; : TALK, switch; : SWITCH, gain; : GAIN, lose; : LOSE
 - This sorting is (the only one) respected by the mobile phone system:

$$ob: \left\{ \begin{array}{l} \text{TALK} \mapsto \epsilon \\ \text{SWITCH} \mapsto \text{TALK}, \text{SWITCH} \\ \text{GAIN} \mapsto \text{TALK}, \text{SWITCH} \\ \text{LOSE} \mapsto \text{TALK}, \text{SWITCH} \end{array} \right.$$

■ We have another respected sorting for $\Sigma = \{TALK, SWITCH\}$ (which?)

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

21/24

Processes as Messages

Why only allow names as messages?

- **Extend action prefixes** π to transmit processes:
 - Allow process variables p, q, r, \ldots in input actions.
 - Allow process expressions in output actions.
- Example: process R is transmitted.
 - $P = \overline{x}\langle R \rangle P'$.
 - Q = x(r).(r|r|Q').
 - $P|Q \rightarrow P'|R|R|Q'$
- Translation:
 - $\widehat{P} = (\text{new } z)\overline{x}\langle z\rangle.(!z.R \mid P').$
 - $\widehat{Q} = x(z).(\overline{z}|\overline{z}|Q').$
 - $\widehat{Q} = x(z).(\overline{z}|\overline{z}|Q').$ $\widehat{P}|\widehat{Q} \Rightarrow (\text{new } z)!z.r|P'|R|R|Q' \sim 0|P'|R|R|Q' \equiv P'|R|R|Q'.$

The higher-order π -calculus can be translated into the plain calculus.

Sorting and Process Relations

- Proposition: Structural congruence and reaction preserve sortings:
 - If $P \equiv P'$ or $P \rightarrow P'$ and P respects ob, then P' respects ob.
 - Sorting thus constrains the pattern of interaction.
- **Example:** Process P|Q with free names x:A,y:B,u:C,v:D
 - Process respects the sorting

$$ob: \left\{ \begin{array}{l} \mathbf{A} \mapsto \mathbf{B} \\ \mathbf{B} \mapsto \epsilon \\ \mathbf{C} \mapsto \mathbf{D} \\ \mathbf{D} \mapsto \epsilon \end{array} \right.$$

- Assume P contains only x free.
- Then P can receive y from Q and use it but it cannot receive u or v.

Sorting assists in analyzing behavior.

Wolfgang Schreiner

http://www.risc.uni-linz.ac.at

22/24

Abstractions as Messages

Transmitted processes may be also parametric.

- **Example:** abstraction F is transmitted.
 - $P = \overline{\chi}\langle F \rangle . P'$.
 - $Q = \chi(f).(f\langle u\rangle|f\langle v\rangle|Q').$
 - $P|Q \rightarrow P'|F\langle u \rangle |F\langle v \rangle |Q'$.
- Translation:
 - $\widehat{P} = (\text{new } z)\overline{x}\langle z\rangle.(!z.F \mid P').$

 - $\widehat{Q} = x(z).(\overline{z}\langle u \rangle | \overline{z}\langle v \rangle | Q').$ $\widehat{P}|\widehat{Q} \Rightarrow \dots \sim \dots \equiv P'|F\langle u \rangle |F\langle v \rangle | Q'.$

Translation takes correctly care of name scopes (free names of abstraction are bound in sender, free names of arguments are bound in receiver).