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Preface

This work was originally published by Springer Verlag as Volume 92 of their
Lecture Notes in Computer Science, in 1980. According to their normal practice
with the Lecture Notes Series, that publication has been discontinued. I am
grateful to Springer Verlag for including the work in their Series and for the
resulting success in disseminating the ideas. :

Since many people still ask for the book, the Computer Science Department
at Edinburgh has decided to reissue it. This is not a revised edition; the work
is completely unchanged except that pages 129 and 130 are now in the right
order—they somehow got swapped in the Springer Verlag version—and a few
typographical errors have been corrected.

However, the algebraic approach to communicating systems has burgeoned in
the last five years or so, and the reader is entitled to be told how these develop-
ments have affected the material of this book. The most important development
is the discovery by David Park of the idea of bisimulation {1]. The following para-
graphs will not be immediately intelligible to beginning readers, but for those
with some familiarity they will show the important technical consequences of this
new idea. ‘ ‘

The main effect of the bisimulation idea is twofold: (1) in the theoretical
presentation of the two principal equivalence relations, strong equivalence (Chap-
ter 5) and observation equivalence (Chapter 7), and (2) in the practical technique
for proving two agents equivalent in either sense. The difference is as follows. In
the case of strong equivalence (~) the definition in this book gives ~ as the limit
MNikew ~k of a descending chain ~o,~1,...,~k,... of equivalence relations, where
~k4+1= F(~r), and where ¥ is the monotonic function of binary relations over
agents defined thus:

{B,C) € F(R) if, for every action g € AU {r} and value v

1. If B £% B’ then, for some €/, C % C' and (B',C") € R
2. It ¢ % ! then, for some B’, B % B’ and (B',C") € R

(~o is chosen as the universal relation, and then ~y is easily shown to decrease
as k increases). Instead of this, we first define a strong bisimulation to be a
relation R over agents such that R C F(R); then we define strong equivalence
to be the largest strong bisimulation, which can be also seen to be the union of
all strong bisimulations; that is, we define ~= U{R | R C #(R)}. Concerning
proof technique, it becomes easier and more intuitively appealing to prove that
two agents are equivalent. Instead of establishing B ~ C by proving B ~; C
inductively for k (as frequently done in this book), we simply exhibit a relation
R such that {B,C) € R, and prove that R is a strong bisimulation.



Precisely analogous changes are made in the treatment of observation-equiv-
alence (~). But there is one subtle difference. Because of the finite-branching
property, it can be shown that the old and new definitions of strong equivalence
are entirely consistent; they define the same equivalence relation. This is not true
for observation equivalence; the new definition (via bisimulation) yields a slightly
stronger—i.e. smaller—equivalence relation than the old. But the difference is
so slight that it is fair to say that all agents of practical interest which are ob-
servationally equivalent in the old sense are also observationally equivalent in the
new sense. It is important to realise that the main advance of bisimulation is
not in defining a new equivalence relation, but in providing an appealing way of
understanding this relation and a very useful technique for demonstrating par-
ticular instances of it. I first took advantage of this in “Calculi for Synchrony
and Asynchrony” [2] in which the theoretical basis of the Calculus is given both
more succinctly and more generally than in the present original text. The lat-
ter paper is concerned at first with a synchronous calculus (in which concurrent
agents are assumed to obey a universal clock), and shows how an asynchronous
calculus—similar to but more general than that of the present book—can be de-
rived from it. For a more direct reformulation of the calculus of this book, based
upon bisimulation, the reader is referred to [3].

Although the definitions in terms of bisimulation have a very different char-
acter, most proofs given in this book can be adapted rather simply to work with
the new definitions. For example, in Theorem 5.5 we prove By | {Bz | Bs) ~
(B1 | B2) | Bs by proving inductively that it holds for each ~j. The bulk of
the proof is a detailed case analysis, and it turns out that the same case analysis
serves—almost word for word—to prove that the relation R is a bisimulation,
where

R = {{B1 | (B2 | Bs),(B1 | Bz) | Bs) ; Bi, B2, B3 are agents}

which is clearly sufficient since ~ is the union of all bisimulations.

Another benefit of bisimulation is that the calculus is easily generalised to
admit infinite sums Y {B; ; ¢ € I} of agents (where I is any indexing set), in
place of the binary sum Bo + B;. Incidentally, the inactive agent NIL can now be
taken as the empty sum (i.e. I =@). One effect of this generalisation is to remove
the difficulty discussed in Section 9.4, page 134. We indicate there that there
appears to be no natural way of dealing with an unbounded number of parallel
activations of a recursive procedure, in the imperative concurrent language whose
semantics is the subject of Chapter 9. But—as pointed out in [2]—there is indeed
a natural method, using infinite summation. And infinite summation has a more
general advantage. In the same paper, we show that it allows the full Calculus—
with value-passing—to be reduced to the pure Calculus without value-passing,



which means that for semantic purposes it is sufficient to consider only the pure
Calculus.

Despite the real advantages of reformulating the theory using bisimulation,
the present book is still technically consistent and presents a rich supply of ap-
plications and illustrations of the theory. There is only one Chapter which is not
worth reading now, namely Chapter 6 on communication trees. It was originally
indicated as inessential, but intended to give clarification; it now appears that
the clarification is minimal and not worth the effort of study.

The author intends to rework many of the Chapters and applications in more
detail in the future. For the time being, it appears worthwhile to reissue the book
as it stands. '

Robin Milner
University of Edinburgh
July 1986
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Introduction

0.1 Purpose

These notes present a calculus of concurrent systems. The presentation
is partly informal, and aimed = at practice; we unfold the calculus through
the medium of examples each of which illustrates first its expressive power,
and second the techniques which it offers for verifying properties of a
system.

A useful calculus, of camputing systems as of anything else, must have
a high level of articulacy in a full sense of the word implying not only
richness in expression but also flexibility in manipulation. It should be
possible to describe existing systems, to specify and program new systems,
and to argue mathematically about them, all without leaving the notational
framework of the calculus.

These are demanding criteria, and it may be impossible to meet them
even for the full range of concurrent systems which are the proper concern
of a camputer scientist, let alone for systems in general. But the attempt
must be made. We believe that our calculus succeeds at least to this extent:
the same notations are used both in defining and in reasoning about systems,
and - as our examples will show - it appears to be applicable not only to
programs (e.g. operating systems or parts of them) but also to data struc-
tures and, at a certain level of abstraction, to hardware systems. For
the latter however, we do not claim to reach the detailed level at which
the correct functioning of a system depends on timing considerations.

Apart from articulacy, we aim at an underlying theory whose basis is
a small well-knit collection of ideas and which justifies the manipulations
of the calculus. This is as important as generality - perhaps even more
important. Any theory will be superseded sooner or later; during its life,
understanding it and assessing it are only possible and worthwhile if it
is seen as a logical growth from rather few basic assumptions and concepts.
We take this further in the next section, where we introduce our chosen

conceptual basis.

One purpose of these notes is to provide material for a graduate course.
With this in mind (indeed, the notes grew as a graduate course at Aarhus
University in Autumn 1979) we have tried to find a good expository sequence,



and have amitted same parts of the theory — which will appear in technical
publications - in favour of case studies. There are plenty of exercises,
and anyone who bases a course on the notes should be able to think of others;
one pleasant feature of concurrent systems is the wealth and variety of
small but non-trivial examples! We cduld have included many more examples
in the text, and thereby given greater evidence for the fairly wide
applicability of the calculus; but, since our main aim is to present

it as a calculus, it seemed a good rule that every example program or

system should be subjected to same proof or to same manipulation.

0.2 Character

Our calculus if founded on two central ideas. The first is observation;
we aim to describe a concurrent system fully enough to determine exactly
what behaviour will be seen or experienced by an external cbserver. Thus
the approach is thoroughly extensional; two systems are indistinguishable
if we cannot tell them apart without pulling them apart. We therefore
give a fommal definition of cbservation equivalence (in Chapter 7) and
investigate its properties.

This by no means prevents us fram studying the structure of systems.
Every interesting concurrent system is built from independent agents which
communicate, and synchronized commmication is our second central idea.

We regard a cammunication between two camponent agents as an indivisible
action of the camposite system, and the heart of ocur algebra of systems
is concurrent camposition, a binary operation which composes two inde-
pendent agents, allowing them to commmicate. It is as central for us

as sequential composition is for sequential programming, and indeed subsumes
the latter as a special case. Since for us a program or system description
is just a term of the calculus, the structure of the program or system

(its intension) is reflected in the structure of the temm. Our manipulations
often consist of transforming a term, yielding a term with different inten-
sion but identical behaviour (extension). Such transformations are familiar
in sequential programming, where the extension may just be a mathematical
function (the "input/output behaviour"); for concurrent systems however,

it seems clear that functions are inadequate as extensions.

These two central ideas are really one. For we suppose that the only
way . to ocbserve a system is to communicate with it, which makes the observer



and system together a larger system. The other side of this coin is
that to place two camponents in cammnication (i.e. to compose then)

is just to let them cbserve each other. If cbserving and camunicating
are the same, it follows that one camnot cbserve a system without its
participation. The analogy with quantum physics may or may not be super-
ficial, but the approach is unifying and appears natural.

We call the calculus CCS (Calculus of Communicating Systems). The
terms of OCS stand for behaviours (extensions)of systems and are subject
to equational laws. This gives us an algebra, and we are in agreement
with van Emde Boas and Janssen [EBJ] who argue that Frege's principle
of compositionality of meaning requires an algebraic framework. But CCS
is somewhat more than algebra; for example, derivatives and derivations
of terms play an Jmportan\t part in describing the dynamics of behaviours.

The variety of systems which can be expressed and discussed in CCS
is illustrated by the examples in the text: an agent for scheduling
task performance by several other agents (Chapter 3); ‘'data flow'
canputations and a ooﬁcurrent mmerical algoritim (Chapter 4); memory
devices and data structures (Chapter 8); semantic description of a
parallel programming language (Chapter 9). In addition, G. Milne {Mln 3]
modelled and verified a peripheral hardware device — a cardreader - using
an earlier version of the present ideas.

After tﬁese remarks, the character of the calculus is best discovered
by a quick look through Chapters 1-4, ignoring technical details. §0.5
(Outline) may also help, but the next two sections are not essential for
a quick appraisal.

0.3 Related Work

At present, the most fully developed theory of concurrency is that
of Petri and his colleagues. (See for example C.A. Petri, "Introduction
to General Net Theory" [Pet], and H.J. Genrich, K. Lautenbach, P.S.
Thiagarajan, "An Overview of Net Theory" [GIT].) It is important to
contrast our calculus with Net Theory, in terms of underlying concepts.

For Net Theory, a (perhaps the) basic notion is the concurrency
relation over the places (conditions) and transitions (events) of a
system; if two events (say) are in this relation, it indicates that



they are causally independent and may occur in either order or simul- ;
taneously. ‘This relation is conspicuously absent in our theory, at

least as a basic notion. When we compose two agents it is the synchroni-
zation of their mutual communications which determines the composite; we
treat their independent actions as occurring in arbitrary order but not
simultanecusly. The reason is that we assume of our external cbserver
that he can make only one observation at a time; this implies that he

is blind to the possibility that the system can support two cbservations
simultaneously, so this possibility is irrelevant to the extension of

the system in our sense. 'This assumption is certainly open to (extensive!)
debate, but gives our calculus a simplicity which would be absent other-
wise. To answer the natural cbjection that it is unwieldy to consider all
possible sequences (interleavings) of a set of causally independent events,
we refer the reader to our case studies, for example in Chapters 3 and 8,
to satisfy himself that our methods can avoid this unwieldiness almost
completely.

On the other hand, Net Theory provides many strong analytic techniques;
we must justify the proposal of another theory. The emphasis in our calculus
is upon synthesis and upon extension; algebra appears to be a natural tool
for expressing how systems are built, and in showing that a system meets its
specification we are demanding properties of its extension. The activity
of programming - more generally, of system synthesis - falls naturally
into CCS, and we believe our approach to be more articulate in this respect
than Net 'Theory, at least on present eviderce. It remains for us to
develop analytic techniques to match those of Net Theory, whose achieve-
ments will be a valuable guide.

As a bridge between Net Theory and programming languages for concur-—
rency, we should mention the early work of Karp and Miller [KM] on parallel
program schemata. This work bears a relation to Net Theory in yielding an
analysis of properties of concurrent systems, such as deadlock and liveness;
it also comes closer to programming (in the conventional sense), being a
generalisation of the familiar notion of a sequential flow chart.

In recent proposals for concurrent programming languages there is a
trend towards direct commmnication between components or modules, and away
fram commmication through shared registers or variables, Examples are:



N. Wirth "MODUIA: A language for modular multiprogramming”, [Wirl;

P. Brinch Hansen "Distributed Processes; a concurrent programiing concep ",
{Bri 2]; C.A.R. Hoare "Cammunicating Sequential Processes”, [Hoa 31].
Hoare's "monitors" [Hoa 2] gave a discipline for the administration’ of
shared resources in concurrent programming. These papers have helped
towards understanding.the art of concurrent programming. Our calculus
differs from all of them in two ways: first, it is not in the accepted
sense an imperative language - there are no cammands, only expressions;
second, it has evolved as part of a mathematical study. In the author's
view it is hard to do mathematics with imperative languages, though one
may add mathematics (or logic) to them to get a proof methodology, as in
the well~known "assertion” method or Hoare's axicmatic method.

One of the main encumbrances to proof in inperaﬁve languages is the
presence of a more-or-less global memoxy (the assignable variables). This
was recognized by Hoare in "Commmicating Sequential Processes"; although
CSP is imperative Hoare avoids one aspect of glaobal memory which makes
concurrent programs hard to analyse, by forbidding any member of a set of
concurrent programs to alter the value of a variable mentioned by another
member. This significant step brings CSP quite close to our calculus, the
more so because the treatment of communication is similar and expressed in
similar notation. Indeed, algorithms can often be translated easily from
one to the other, and it is reasonable to hope that a semantics and proof
theory for CSP can be developed from CCS. Hoare, in his paper and more
recently, gives encouraging evidence for the expressiveness of CSP.

We now tum to two models based on non-synchronized cammmication.
One, with strong expressive power, is Hewitt's Actor Systems; a recent
reference is [HAL]. Here the commmication discipline is that each
message sent by an actor will, after finite time, arrive at its destination
actor ; no structure over waiting messages (e.g. ordering by send-time)
is imposed. This, together with the dynamic creation of actors, yields
an interesting programming method. However, it seems to the author that
the fluidity of structure in the model, and the need to handle the
collection of waiting messages, pose difficulties for a tractable
extensional theory.

Another non-synchronized model, deliberately less expressive, was
first studied by Kahn and reported by him and MacQueen [KMQ]. Here the
intercommmication of agents is via unbounded buffers and queues, the



whole being determinate. Problems have arisen in extending it to non-
determinate systems, but many non-trivial algorithms find their best
expression in this medium, and it is an example of applicative (i.e.
non-imperative) programming which yields to extensional treatment by
the semantic techniques of Scott. Moreover, Wadge [Wad]l has recently
shown how simple calculations can demonstrate the liveness of such
systems.

A lucid comparative account of three approaches - Hewitt, Kahn/
MacQueen and Milner - is given in [MO].

In Chapter 9 of these notes we show how one type of concurrent
language - where comunication is via shared variables — may be derived
fram or expressed in terms of CCS. This provides same evidence that our
calculus is rich in expression, but we certainly do not claim to be able
to derive every language for concurrency.

A rather different style of presenting a concurrent system is
exemplified by the path expressions of Campbell and Habermann [CaH].
Here the active parbs of the system are defined separately fram the
constraints (e.g. the path expressions) which dictate how they must
synchronize. More recent work by Lauer, Shields and others - mainly
at Newcastle — shows that this model indeed yields to mathematical
analysis. A very different example of this separation is the elegant
work of Maggiolo-Schettini et al [MW]; here the constraints are
presented negatively, by stating what conjunctions of states (of separate
camponent agents) may not occur. This approach has an advantage for
systems whose components are largely independent (the authors call it
"loose coupling™), since then only few constraints need to be expressed.

This section has shown the surprising variety of possible treatments
of concurrent systems. It is nothing like a camprehensive survey, and
the author is aware that important work has not been mentioned, but it
will serve to provide some perspective on the work presented here,

0.4 Evolution

This work evolved from an attempt to treat cammnication mathemati-—
cally. In Milner : "Processes: a mathematical model of camputing agents"
[Mil 1] a model of interacting agents was constructed, using Scott's

b
'
i
/
i
¢

i



theory of damains. This was refined and grew more algebraic in G. Milrie
- and Milner: "Concurrent Processes and their syntax" [MM]. At this
point we proposed no programming language, but were able to prove
properties of defined concurrent behaviours. For example, Milne in his
ph.D. Thesis "A mathematical model of concurrent camputation” [Mln]
proved partial correctness of a piece of hardware, a card-reader, built
from four separate camponents as detailed in its hardware description.
Our model at this stage drew upon Plotkin's and Smyth's Powerdomain
constructions, [Plo 1, Smyl. which extended Scott's theory to admit
non-determinism. Part of our algebra is studied in depth in [Mil 2].

At this point there were two crucial developments. First ~ as we
had hoped ~ our behaviour definitions looked considerably like programs,
and the resexblance was increased by merely improving notation. The
result, essentially the language of CCS, is reported in [Mil 3] and
was partly prompted by discussions with Hoare and Scott. (For completeness,
two other papers [Mil 4,5] by the author are included in the reference
list. Each gives a slightly different perspective from [Mil 31, and
different examples.) The second development was to realise that the
resulting language has many interpretations; and that the Powerdomain
model, and variants of it, may not be the correct ones. A criterion was
needed, to reject the wrong interpretations. For this purpose, we turned
to cbservation equivalence; two behaviour expressions should have the
same interpretation in the model iff in all contexts they are indistinguish-
able by cbservation.

It now turns out that a definition of observation equivalence (for
which admittedly there are a few alternatives) determines a model, up
to isomorphism, and moreover yields algebraic laws which are of practical
use in arguing about behailrdiours. We have strong hope for a set of laws
which are in scme sense coamplete; in fact the laws given in Chapters 5
and 7 have been shown camplete for a simplified class of finite (terminating)
behaviours. In this case, "complete” means that if two behaviour expressions
are chservation—equivalent in all contexts then they may be proved equal
by the laws; this completeness is shown in [(HM].

0.5 Outline

In Chapter 1 we discuss informally the idea of experimenting on, or

cbserving, a non-deterministic agent; this leads to the notion of



synchronisation tree (ST) as the behaviour of an agent. Chapter 2 qis-"
cusses mutual experiment, or cammmication, between agents, and develops
an algebra of STs. In Chapter 3 we do a small case~study (a scheduling
system) and prove samething about it, anticipating the formal definition
of cbservation equivalence and its properties to be dealt with fully in
- Chapter 7.

Chapter 4 enriches our comunications - up to now they have been just
synchronizations — to allow the passing of values from one agent to another,
and illustrates the greater expressive power in two more examples; one is
akin to Data Flow, and the other is a concurrent algorithm for finding a
zero of a continuous function. The notion of derivative of a behaviour
is introduced, and used in the second example.

In Chapter 5 we define CCS formally, giving its dynamics in terms
of derivations (derivative sequences). This yields our strong congruence
relation, under which two programs are congruent iff they have essentially'
the same derivations, and we establish several laws cbeyed by the congruence.
In Chapter 6 we present communication trees (CTs, a generalisation of STs)
as a model which obeys these laws; this model is not necessary for the
further development, but meant as an aid to understanding.

Chapter 7 is the core of the theory; observation equivalence is
treated in depth, and fram'it we gain our main congruence relation,
observation congruence, under which two programs are congruent'iff they
cannot be distinguished by cbservation in any context. Having derived
same properties of the congruence, we use them in Chapter 8 to prove the
correct behaviour of two further systems, both to do with data structures.

In Chapters 9 and 10 we look at some derived Algebras. One takes the
form of an imperative concurrent programming language, with assignment
statements, "cobegin-coend" statements, and procedures. In effect, we
show how to translate this language directly into CCS. The other is a
restriction of CCS in which determinacy is guaranteed, and we indicate
how proofs about such programs can be simpler than in the general case.

Finally, in Chapter 1l we try to evaluate what has been achieved,
and indicate directions for future research.



CHAPTER 1

Experimenting on nondeterministic machines

1.1 Traditional equivalence of finite state acceptors

Take a pair S,T of nondeterministic acceptors over the alphabet
r ={a,b,c,d} :

The accepting states of S8 and T are s, and 1:2 respectively; in non—
deterministic acceptors we can always make do, as here, with a single 'dead’
accepting state.

A standard argument that S and T are equivalent, meaning that they
accept the same language (set of strings), runs as follows. Taking S5 (resp
ti) to represent the language accepted starting from state s; (resp ti) , We
get a set of equations for S, and for T :

8, = as, t0 = at1 + ati
s, = bs2 + cs, tl = bt2
8, = ¢ tj'_ = Cts
8y = dso t2 =g
t3 = dt0

Here as usual + stands for union of languages, ¢ for the language {e}
containing only the empty string, and we can think of the symbol a standing

for a function over languages: as = a(s) = {ag; o ¢ s} .

Now by simple substitution we deduce
8, = a(be + cdso) .
By applying the distributive law af(s + s') = as + as' we deduce
Sy = abe + acdls0 '
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and we can go further, using a standard rule for solving such equations known
as Arden's rule, to get

Sy = (acd) *abe .
For T it is even simpler; we get directly (without using distributivity)
t, = abe + acdt,,

and the unique solvability of such equations tells us that s; =t;, , so S
and T are equivalent acceptors.

But are they equivalent, in all useful senses?

1.2 Experimenting upon acceptors

Think differently about an acceptor over {a,b,c,d} . It is a black
box, whose behaviour you want to investigate by asking it to accept symbols
one at a time. So each box has four buttons, one for each symbol:

a a
S b4 S b d T b 4 ty 4 d
& t

There are four atomic experiments you can do, one for each symbol. Doing an
a~experiment on S (secretly in state s; , but you don't know that) con-
sists in trying to press the a-button, with two possible outocames in general:

(i) Failure - the button is locked;
(ii) Success - the button is unlocked, and goes down (and
secretly a state transition occurs).

In fact we cannot distinguish between S and 7T , in their initial states,
by any single atomic experiment; the a—experiment succeeds in each case, and
the other(three fail.

After a successful a-experiment on each machine, which may yvield

a a
S by s, ¢d T b¢ t ¢4d
& &

we may try another atomic experiment, in our aim to see if the machines are

equivalent or not. Clearly a b-experiment now succeeds for S and fails
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for T , though the other three experiments fail to distinguish them. Iifter
trying the b-experiment, then, can we conclude that S and T are not
equivalent?

No, because S's response to the a-experiment could have been different
(for all we know) and locked the b-button, while T's response could have
been different (for all we know ~ and it could indeed!) and unlocked the
b-button. Following this argument further, we may feel forced to admit that
no finite amount of experiment could prove to us that S and T are, or are
not, equivalent!

But suppose
(1) It is the weather at any mcament which determines the choice of
transition (in case of ambiguity, e.g. T at t, under an
a—experiment) ;
(ii) The weather has only finitely many states - at least as far
as choice~resolution is concerned ;

(iii) We can control the weather .

For some machines these assunptions are not so outrageocus; for example, one
of two pulses may always arrive first within a certain temperature range, and
outside this range the other may always arrive first. (At the boundary of
the range we have the well-known glitch problem, which we shall ignore here.)

Now, by conducting an a-experiment on S and T under all weather con-
ditions (always in their start states, which we have to assume are recover—
able), we can find that S's b-button is always unlocked, but that T's
b-button is sometimes locked, and we can conclude that the machines are not

equivalent.

Is this sense of equivalence, in which § and T are not equivalent,
a meaningful one? We shall find that we can make it precise and shall adopt
it - partly because it yields a nice theory, partly because it is a finer
(smaller) equivalence relation than the standard one (which we can always
recover by introducing the distributive law used in §1.1), but more for the
following reason. Imagine that the b-buttons on S and T are hidden.
Then in all weathers every successful experiment upon S unlocks scme
visible button:

S (with b hidden) is not deadlockable '
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while in same weathers, and after same experiments, all of T's visible’
buttons will be locked:

T (with b hidden) is deadlockable.

We wish to think of a nondeterministic choice in such machines as being
resolved irreversibly, at a particular moment, by information flowing into
the system from an unseen source; if a deadlock can thus arise in one machine
but not in another, we do not regard them as behaviourally equivalent.

1.3 Behaviour as a tree

Because we reject the distributive law a(x +y) = ax + ay , we can no
longer take languages (sets of strings) as the behaviours of our machines.
We proceed to an alternmative. From now on we will use NIL instead of ¢
to stand for a behaviour which can do nothing (= admits no experiment) ; we
shall also use Greek letters for our symbols - i.e. names of buttons - so you
should consider «,8,y,8§ as replacements for a,b,c,d in our simple example.

First, take the transition graph for S - and unfold it into a tree with
A
states as node labels and symbols as arc labels:

Because state names are present we have lost no information; the state trans-
ition graph can be recovered fram such a tree. But the experimenter cannot
see the state -~ he can only see the transitions. This leads us to drop the
node labels, and take the infinite tree

as the behaviour of S .

Definition A label is a member of a given (fixed) label set A .

We are using a,B,Y,.. to stand for labels. (The use of the word ‘label’ in
place of 'symbol' will be further motivated later.)



.;\",’.

13

1

Definition A sort is a subset of A .

We shall usually use L,M,N,.. to stand for sorts. We shall also often use
the word agent in place of 'machine' or 'acceptor’, so

'S is an acceptor over the alphabet '
becares
'S is an agent of sort L' .

Definition A Rigid Synchronization Tree (RST) of sort I is a rooted,
unordered, finitely branching tree each of whose arcs is labelled by a
menber of L .

Thus the tree in the last diagram is an RST of sort {o, 8,7y, 8} . (It is also
an RST of any larger sort.)

Why 'rigid'? Because it is the behaviour of a rigid agent — one which
can make no transition except that corresponding to an atcmic experiment. We
shall scon meet other transitions.

Why 'synchronization'? Because we shall later see how the communication
of two agents can be represented in forming their joint tree from their
separate trees. Then the joint tree will not be rigid, in general, since
intercommmnication between component agents is not dbservable.

Notice that finite RSTs can be represented as expressions:

a N
I is o (BNIL + yNIL)
/N
o

is afNIL + ayNIL
Bl v

and usually there is more than one natural expression:

B\Y is oNIL + (BNIL + yNIL) , or
® (oNIL + BNIL) + yNIL .

Indeed, + is both cammutative and associative, since we declared RSTs to
be unordered trees - and NIL is easily seen to be a zero for summation.
To justify these remarks we now define the algebra of RSTs.



1.4 Algebra of RSTs

Ignoring sorts for a moment, we have an elementary algebra over RSTs,
whose operations are:

NIL (nullary operation)
NIL is the tree e ;

+  (binary operation)

A+& is the tree f‘;\tz (identify roots) j

2 (unary operation, for each 2 e A)

A(A) is the tree A o

t

They cbey the following laws, as you can easily see:

Associativity x+(y+z)=(x+y) +z
Comutativity xty=y+x
Nullity X + NIL = x

In fact, these laws are camplete: any true equation between RST expressions
can be deduced fraom them.

If we consider sorts, and let RSTL be the set of RSTs of sort L ,
then NIL is of sort L forany L :

NIL e RSTL.

Further, + takes trees of sort L,M respectively to a tree of sort LuM :

+ € R’STLXRSTM—rRSTLUM ’

and XA takes a tree of sort L to a tree of sort Iu{r} :

A € RSTL—)RSTLU{).} .

Ve shall usually forget about sorts for the present, but there are times
later when they will be essential.

Consider now solving recursive equations over RSTs. We wish the equ-
ations for our agent S of §l.1

s0 = u51 Sl = Bs

2
S2=NIL S3=6$O

to define the (infinite) behaviour of S as an RST of sort {o,B,y,8} .

-+
Y53
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!

This set of egquations has a unique solution for the variables sO, .. ,33 H
you can see this by the fact that the entire tree can be developed top~down
to any depth: ‘ o

.
s = % = ¢ = ... and so on.
0 —/1_\
8 .
A

Warning. Not every set of recursive equations has a unique solution;
consider the simple equation

s = s

which is satisfied by any RST (or anything else, for that matter).

Again, same sets of equations define no RST at all. Consider the equation

s = s + oNIL, ;

a solution would have to be infinitely branching at the root. Even if we
allowed infinitely branching RSTs, so that

N

SO= oo /o Y > oo
L

would be a solution, it would not be unique since SO + t would also
be a solution for any t . We defer this prcblem to Chapter 5.

Exercise 1.1 Can you find a condition on a set of equations

it

s

so - (with RST expressions involving Syre=18y
1. on the right-hand sides)

s = ...

which ensures that it possesses a unique solution in RSTs?
(Hint: consider cycles of e~transitions in transition graphs.)

1.5 Uncbservable actions

Under the conventiconal definition, a nondeterministic acceptor may
have transitions labelled by & , the null string. Consider R , a modi-
fication of our § of §1.1 (reverting briefly to Raman alphabet):

a
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: ;
(The loop formed by the d-transition is irrelevant to our ccmparison.j
In the conventional sense, R and S are equivalent. But what does the
e-transition mean, in our more mechanistic interpretation? It means that
R in state r; (i.e. after the a-button has been pressed) may at any time
move silently to state ri , and that if a b-experiment is never attempted
it will do so.

Thus, if we attenpt a b-experiment on R , after the successful a-
experiment, there are same weather conditions in which we find the b-
button permanently locked; if on the other hand we attempt a c-experiment
(after the a-experiment) we shall in all weather conditions find the
c-button eventually unlocked (eventually, because although R may take a
little time to decide on its e-transition, it will do so since no b~
experiment is attempted).

Exercise 1.2 Use this as the basis of an argument that no pair of R, S
and T are equivalent. A rigorous basis for the argument will be given

later.

Let us return to our Greek alphabet, and ask how we should write the
equations specifying R's behaviour. We choose the symbol Tt in place of
e (to avoid confusion with the mull string), and use it as a new unary
operation upon behaviours. The equations determining the behaviours
Tyre-sT; are:

= YT,

=a
I X 3

0 1
r, = NIL r3=6r0

p— ¥ 1
r, = Br2 + ] ]

We are assuming that t ¢ A (the fixed label set).

Definition A Synchronization Tree (ST) of sort L is a rooted, unordered,
finitely branching tree each of whose arcs is labelled by a member of
it} .

Thus a rigid ST (an RST) is just an ST with no arcs labelled Tt ; it is
the behaviour of an agent which can make no silent transitions.

Since we are taking the unary operation T over STs to be given by

<Ay

we can of course deduce the ST-behaviour of R . It is
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STs are a simple and useful notion of behaviour. They are just the
unfoldings of behaviour equations, which in turn follow directly fram
transition graphs. Of course in this way different transition graphs can
yield the same ST, from which we can be certain that they are indistinguish~
able by experiment.

Exercise 1.3 Convince yourself that the transition graphs

have the same unfolding.

However, different STs (or transition graphs yielding different STs)
may be indistinguishable by experiment. This is true even for RSTs;
consider the simple pair

each of which admits a single o~experiment and then nothing else.

But it is even more true in the case of unobservable actions. Later
we shall study an equivalence relation, cbservation equivalence, over STs,

which can (for finite STs) be axiomatized by a finite set of equations
added to those given in §1.4 above. To get a foretaste of the equivalence
consider the following exercise.

Exercise 1.4 Examine each of the following pairs of simple STs and try to
decide by infommal argument, as in Exercise 1.2 above, which are chservation
equivalent (i.e. indistinguishable by experiment). You may reasonably
conclude that four pairs are equivalent, or that six pairs are equivalent,
but you should also find that the notion of equivalence is not yet precise.
The point of this exercise is that it is not trivial to capture our informal
arguments by a precise notion.



(iv)

(vi)

Can you think of same equational axiams of observation equivalence?




Synchronization

2.1 Mutual experimentation

The success of an a-experiment enables the machine to proceed (to
offer further experiments); it also allows the observer to proceed (to
attempt further experiments). This suggests an cbvious symetry; we
would like to represent the cbserver as a machine, then to represent the
composite cbserver/machine as a machine, then to understand how this
machine behaves for a new cbserver.

How should two machines interact?
O

B 9 s 95 ne t 13

s Y T 8
We must say which experiments offered by S may cambine with or (complement)
which experiments of T to yield an interaction. Rather than set up a
label correspondence (e.g. o <»z, §<> n) for each machine combination,
we introduce a little structure on cur label set j.

We assume a fixed set A of names. We use o, B, vy, ... to stand for
We assume a set A of co-names, disjoint from A and in bijection
with it; the bijection is { ):
aler) > aled)
and we call ¢ the co-name of q. Using (") also for the inverse bijection,
we have § = a.
Now we assure A = AuA to be our set of labels. We shall use 2
to range over A. We call A and 1 camplementary labels.
The function () is now a bijection over A. We extend it to subsets
of A; in particular for any sort L, L = {i; rel} s
We shall sametimes need the function
name(s) = name (o) = o
which we extend to sorts by defining
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names (L) = {name(r); iel}.

Now consider the pair of machines

&
s 48 B t 48
5y ¥

S: {OHB';} Ts {EIYIG}

The natural candidate, perhaps, for the cavbined machine S||T may be
pictured thus:

or:

N J

The intuition is that camplementary ports, one in each machine, are
linked and hidden (labels removed), since these links represent mutual
observation, while other ports still support external cbservation.

But under this scheme there are two disadvantages. First, consider
)4

*

o

x 4

R: (8,8}
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We can form R (SIIT) and (R]|S)I T:

- -
s t s En t
| Sm———— i_}#J
B
r r & SO

each of sort {u,g} but clearly different. S's offers of B-experiments
are observed by T in the first case, but by R in the second case. So

il is not associative.

Second, it is useful to allow that S's g-experiment-offers
{(or p-capabilities as we shall sometimes call them) ﬁ\ay be observed by
either R or T (that is, each g-experiment on S may be done by either
R or T, but not both); this mekes S into a resource shared by R
and T.

The solution is to factor cambination into two separate operations:
one to link ports, the other to hide them. We shall use the word
camposition for the first of these operations, and the second we shall
call restriction.

2.2 Camposition, restriction and relabelling

The camposite R|S of our two machines R and S may be pictured

[}

n

- 1®
wl

while for (RIS)IT we get
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[ B3

That is, for each A, in fomning U!V we link every port labelled A
in U to every port labelled X in V.

Exercise 2.1 Form R| (S]T) as a picture, and convince yourself by other
examples that - on pictures - camposition is an associative and commar-
tative operation.

Before defining camposition of behaviours, let us lock at two other
operations on pictures.

For each aeA, we define a postfixed restriction operation \e,
which on pictures just means "hide the ports labelled o or o , i.e.
it drops the labels o and o from pictures, thus reducing their sort.

(R|S)\B

—

0

(=Rils)

<y

({RIS) IT)\B\Y\S

L I

/I
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Exercise 2.2 Which of the following are identical as pictures?

(1) ((RIS) ITI\B\Y\S (v)  (RI(SITI\8)\B\y
(i1)  (RIS)\BITI\Y\S (vi) (RI(SITINY)\B\S
(i)  (RIS)\yITI\B\S (vii) ((RITI\SISI\B\Y
(iv)  ((R\y[S) |T)\B\S (viii) ({RITI\S|S\&)\B\Y

Note: \o binds tighter than | , so that UiW\e means U|(V\a).

Besides its use with camposition, the restriction operation by itself
corresponds to a simple, rather concrete, action:~ that of hiding or
'internalising' certain ports of a machine. Compare the remarks on hiding
the b-buttons of two machines, at the end of §l.2.

Note that we can define S ||T, vhere S:L and T:M, by
[l T = (8|T\e .. \o where {aj,...,o } = names (TLoM) .

We shall henceforth abandon the use of upper case letters for machines.
There is a fine distinction between the ideas of (i) a machine which may
move through states but remains the same machine (a physical notion) and
(ii) a machine-state pair, i.e. a way of specifying a behaviour with a
definite start (a more mathematical notion, exemplified by the normal
definition of Finite-state Acceptor as consisting of a state set, a transi-
tion relation, a set of accepting states and a start state), Our lower
case letters correspond to the latter idea - indeed, they denote the speci-
fied behaviours (here as STs), and it is these which are the domain of our
algebra; we shall soon see what r|s etc. mean as behaviours.

We also have another use for upper case 1e£ters; we say that S:L > M
(where L,M are sorts) is a relabelling from L to M if

(i) it is a bijection;

(ii) it respects complements

(i.e. S(a) = S(a) for a,ael).

We define the postfixed relabelling operation [S], over (pictures of)
machines of sort L, as simply replacing each label AeL by S(i).
Thus for r,t as above we have

r!t‘=

wl
o+

:?)

p |
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and S: {EIYIG 15_} d {.5 rY 7€ I;}l given by

S(g) =8, Sly) =y, S8)=e, 5G) =¢
is a relabelling; we then have

(rjt)rs] =

P
A
kS

We shall use convenient abbreviations in writing relabellings explicitly.
Thus

Xl/all---r)\n/dn or )\1A2---)\n/(11(120--dn

(where agreesray are distinct names, and )‘1""')‘n are labels with
distinct names) stands for the relabelling S:L + M given by
(i) S(ai) = }.i if giEL
(ii) S(ai) Ay if o€l
(iid) s() A if name (A)é{al,...,un}
provided that the function so defined is a relabelling. So in place of

(rit)[s] above, we write

(x1)[8/B, /81 or (r|€)[se/ps]-
When we see the laws of the Flow Algebra (laws for the Composition,
Restriction and Relabelling operations) in Theorem 5.5, we shall see that
relabelling distributes over camposition, so that we have

(x|£)(8/8, /81 = x[8/8, /61|tI6/8, /6]
(as you can readily check) - even though in strict formality E/s, e/§
stands for a different relabelling in each case, because r,t and rjt
possess different sorts.

2.3 Extending the Algebra of Synchronization Trees

We must now add our three new operations to the algebra of STs, using

intuition about the operational meaning of these trees. In future we
continue to use A to range over A, and use u,v to range over aulrl,
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Camposition | : S‘I‘L x STM > STLUM
Consider two STs

For their camposite, four actions are possible. tlu admits an o—experiment
(because t does), so one branch of tju will be

o

This branch represents independent action by one component, and similar
branches exist for a g-experiment on t and an ;—e}qJeriment on u. None
of these three branches represents interaction between t and u; but
there is a possible interaction, since u's E-Offer‘ocmplements t's
o-offer. Since this action is intermal (not dbservable) we use ¢ and
represent it in the composite tree by a branch

T

/o

Putting all the branches together yields

Now composition of t and u has been defined in texms of camposition
of their sons; clearly this amounts to a recursive definition of | .
More precisely, since every tree may be written in the form

t= Z u,t, 4 u,ehu{t}

1<ism ** *

(with m=0 if t = NIL), we may define composition as follws:
Definition If t= JZ_“iti and u = %\)juj, then

tla = Yp, (g |w) + Poelu) + §_ ol |u) .

I :ZL 11 g J J = 13

”1j
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Exercise 2.3 (Consider only finite STs).

(i) Prove by induction on the depth of t that t|NIL = t.
(ii) Work out tju for t = uA‘B and u= I;; choose sdre
other examples.
(iii) Prove by induction on the sum of the depths of trees that
tju=ujt and t]u]v) = (tju)|v.

We should criticize two aspects (at least)of our definition.
Considering our first example of ST composition, it can well be argued
that the fom we gave for t|u fails to represent the possible con—
current activity of t and u - for example, we may think that a
g—experiment on t can be performed simultaneously with an ;—e:q;eriment
on u, while (looking at your result for Exercise 2.3(ii) also) the ST
for t|u merely indicates that the two experiments may be performed in
either order. Indeed, STs in no way represent true concurrency.

Two not campletely convincing defences can be given. First, STs
are simple, and tractability in a model has great advantages; second,
in so far as we wish a 'behaviour-dbject' to tell us how a system may
appear to an observer who is only capable of one experiment at a time,
we find it possible to ignore true concurrency. You are urged to

consider this question in greater depth.

The second aspect for criticism is the introduction of 1 to represent
successful 'mutual cbservations'. If we had no need for it in defining |,
we could leave it out of our theory altogether.

Again, there are two defences, but this time convincing ones. First,
consider replacing the third temm in the recursive definition of tju -
namely the term 1 T(tiluj) - by just Z_ (ti|uj);

lli“\’j ui_"j
intuitively, an internal action just vanishes. It turns out that |
is no longer an associative operation, which conflicts strongly with our
assumption that the joint behaviour of three agents should in no way
depend upon the order in which we wire them together before they do any-

thing!

Exercise 2.4 With this new definition work out t|(u]v) and (t|u)lv

for t = cI, u= EI, v=sI to justify the above assertion.
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The second defence is that we must somehow express, in the ST (tl’u)\a
when t = aAB, u-= I;, the possibility that communication between t
and u can prevent any g-experiment.

Exercise 2.5 Under the normal definition of |, and of \a (see below),
work out that
(tlwve = v AB

in this case.

This ST does indeed represent possible prevention of a B-experiment,
and unless we leave STs (and derived models) altogether it is hard to
see how such deadlock phenavena can be represented without .

Restriction \a:ST} - STL_{u’;} (aeh)

We wish to deny all o~ and ;-@{periments, so that t\e is formed
by pruning away all branches and sub-branches labelled o or . Considering

More formally, for t = Z],(_ti we have
+i
i

Definition t\a = ] _ u,{t:\a)
péla,al
i
An cbvious alternative to the restriction operation would be to define
\A for each mewmber A of A by
B = iui(ti\” ;
uy A

in other words, we might choose to restrict names and co—names independently,
instead of both at once. This would, of course, have a correspondingly
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different effect on pictures. The reason for our choice is in fact to!
do with the algebra of pictures (Flow Algebra) under |, \o and [S];
it has a particularly simple algebraic theory [MM, Mil 21, which we
have not found for the suggested alternative.

Relabelling [S]: STL > STM (S:L + M a relabelling)

This operation is as simple.on STs as it is on pictures; it just
applies the relabelling S to all labels in the tree. More formally,
for t= zuiti we have
i
Definition t[S] = }S(u,) (t;[S])
i
where we now adopt the convention that S(tr) = t for any relabelling S.

An important (though not the only) use of relabelling is in cases
where we have several instances of a single agent r in a system, but
each with different labelling, so that under camposition they are properly
linked. We have only to define several 'copies’

L r[Si]

of the generic agent r, and then cawpose the r,.

One might have allowed more general relabellings, using many-one
functions over A (so that differently labelled ports come to bear the
same label) or even relations in place of functions (so that one port
could 'split' into two differently labelled ports). Suffice it to say
that this creates problems in the axiomatization of Flow Algebra. The
present choice allows plenty of scope.

2.4 A simple example: binary semaphores

A binary semaphore s, of sort {7,$}, may be pictured
I

L

s

To gain the semaphore (Dijkstra's P Operation) we must perform a =—
experiment; we release it (the V operation) by a E—experiment. Clearly

S =w¢ s
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expresses the appropriate behaviour (a long thin ST!). Imagine a
generic agent p, whose critical section we represent by a sequencé
<a,B> of atomic actions (experiments upon a resource, say), and whose
‘non—critical section we ignore:

p = TaB¢p .
We wish to place several instances of p

= = = ,/
p; p[Si] mxis i¢pi (whexre Si uiBi, aB)
in comunication with s, and derive the ocomposite ST. Consider just
two copies of p (i =1,2) and form
q = (pylp, |8\
which may be pictured as shown:

&

hd ¥ -
Qg d
B1 p s p <a2
1 ~ . |62
A\ X »

q
We easily derive an equation for the composite ST ¢, using the Expansion
Theorem — given in §2.5 - repeatedly. You should read that section with
reference to the expansion which follows:

q = (ma,B,¢p, |m0,8,0p, [165) \m\é
= r((a161¢pllp2|d'>s)\n\¢) + 'r((p1|a282¢p2|$5)\1r\¢
= 10,8, (00, [P, |F8)\1\0) + 10,8, ((,|4P, |35)\m\4)
= 1,8, 7((p, [P, [S)\7\¢) + 08,7 ((p, [P, |8)\m\¢)
= 1a,8,1q T raB,1q .

So g is the ST given recursively by
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and exactly expresses the fact that the critical sections of P, ,and“’

Py

can never overlap in time, i.e. a sequence like @08 ene is not

possible.

In fact, an n-bounded semaphore (n>1) can be constructed as

sn=s|s|...|s :

n times

this is an example of composition which effects no linkage, but will yield
a multi-way linkage with ‘'user' agents.

The 2-bounded semaphore Sy with 3 users, can be pictured

B4l P Bog P B4

[

Diag‘ram for (91|P2|P3|52)\“\¢

(52'5 border, and its two collector nodes, are fictitious; they are just
used here to avoid drawing 12 links in the picture).

Exercise 2.6 As practice in using the Expansion Theorem, develop the

expression g = (pllpglpslsls)\ww, and draw part of the ST to convince
yourself that at most two critical sections can be simultaneously active.
Can you even derive a set of mutually recursive behaviour equations, for
which q is the solution? It's a bit lengthy, but possible. The
developrent is shorter if you take o JTeyTe e, 81=62=83=6 ; i.e. deal
with (pipiplsls)\n\¢ instead; then the ST will not distinguish the
critical sections of each copy of p, but you should be able to show
that at any point in time the excess of a's over B's perfomed

lies in the range {0,2].
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2.5 The ST Expansion Theorem

We consider trees expressed in the form

t = z w.t, .
1<ign * 1

For a set {ai,...,ak} = A of names, we abbreviate \czl\mQ...\ozk by \A.

Theorem 2.1 (The Expansion Theorem)

Iet t= (t1|1:2|...:ltm)\A, where each ti is a sum as above.
Then t=X{u((t1|---|ti'l---ltm)\A)i 1<ism, uti' a sumand of t,
name (u)4A}
+Z{r((t1|...|ti'|...|tj'|...|tm)\A); 1ci<g<m,
Ati' a summand of t,, At) a summand of t.}
1 J J
Proof Omitted; it uses properties of the Flow operations |, \a and
[81, and can be done by induction on m.
The theorem states that each branch of t oorresponds either to an
unrestricted action of some t

il
t, and tj (i <j). For example consider

or to an internal commmnication between

i
({ot + Bj:\')

e—

[fou + yu) [ (Bv + yv))\ares
the theorem gives us T —,“
y(((at + gt") [u'[ (B + yv'))\a\B)
- - (unrestricted actions)
+ y(((at + Bt") | (au + yu') |[v')\o\B)
+ o{(tju] (Bv + yv'))\e\B) (a—commmication)
+ T ({E" [ (au + yu') [v)\a\B) (g-communication)

+ o{((at + gt") Ju'|v")\a\B) (y—commnication)
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Exercise 2.7 A lot can be done using compositions of two kinds of element:

o

Cycler c = afyc
Y B
Disjoiner g Y d = o(pd + yd)

(i) Write the behaviour of @ @

as a restricted camposition of relabellings of c¢. (The little arrows
represent the port at which each copy of ¢ offers its first experi-
ment; the progress of the system can be simulated by "swinging arrows":
try it). Expand the behaviour, to get a recursive definition of an ST
which doesn't involve composition, restriction or relabelling.

(ii) Design a system (using c only) to behave as the ST
s = g(tBts + tyts).

Is this equivalent to d?



CHAPTER 3

A case study in synchronization, and proof techniques

3.1 A scheduling problem

Suppose that a set {pi ; 1 <i<n} of agents all wish to perform
a certain task repeatedly, and we wish to design a scheduler to ensure
that they perform it in rotation, starting with p 4 (This example
was used in [Mil 51.)

More precisely, the p; are to start their performance of the
task in rotation; we do not impose the restriction that their perform-
ances should exclude each other in time (this could be done using a
semaphore) but we do impose the restriction that each p; should be
prevented fram initiating the task twice without campleting his first
initiation. (p:.L may try this unintentionally, because of bad programming
for example.)

Suppose that p; requests initiation at label oy s and signals
completion at Bi (1sis<n). Then our scheduler Sch of sort AuB ,
where A = {ai ; 1<i<n} and B = {Bi ;1< i<n} , must impose two
constraints on any signal sequence e(AuB/ :

(i) When all occurrences of Bi (1<isn) are deleted, it becomes
w .
((11(12 ....otn) H
(ii) For each i , when all occurrences of aj,sj(j #1i) are deleted,
it becames
w
(aiBi) .
We could write a behaviour description for Sch directly, but prefer to build
it as a ring of elementary identical components, called cyclers.

Generic cycler ¢ : Y
a
B $
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_ oy
8
Scheduler Sch : @\ n@'

using also a ‘'start button’,

Starter s ¢ @
———

Yy

In building the net we have instantiated c by

ci = c[ui/cu Bi/Br Yi/Y Y ;i+1/6]

for 1<i<n , where addition on subscfripts is module n , so that

\ sch=(s|c; |-+ lcn)\wrl-"\\rn \

What are the behaviours s and ¢ ? 'The starter is there just to
ensble ¢, at Y, and die, so

s=Y1NIL

As for the cycler, it appears that he should cycle endlessly as follows:

(i) Be enabled by predecessor at v ;

{ii) Receive initiation request at

(iii) Receive termination signal at
in either order.

.
r

o
B and enable successor at § ,
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So we define

= ya (Bsc + 58C)

and this determines Sch campletely. But does it work? Informally
we can convince ourselves that it does, by arrow-swinging. More
formally, there are two possibilities:

Method 1  Show as directly as possible that constraints (i) and (ii)
are met. For the first constraint, this may be expressed as absorbing
(i.e. permitting) all Ei cammumnications, and showing that the result
is observationally equivalent to

(u1a2. -ea o)’

Iet us make this precise by adopting the convention that if s is any
non-empty label sequence, then s® is the behaviour given by

s¥ = s(sw).

Then what we want to prove, for the first constraint, is

(1) schll(e,”|...18,") = R

(where x is observational equivalence, which we define formally in §3.3).
Using the notation
n{qi ;iel} or [1 q;
ieT
for multiple composition, we can rewrite (i) as
sl T1 8" = (a,---ap)”
1<j<n
The required equivalence for the second constraint is

i) s (I o |1 e“’) v (0,8,)" foreach i, 1sisn.
Jei 3 jed

Method 2 We can specify the behaviour of the complete scheduler by a
single parameterized behaviour equation, in the following way. Cbserve
that the scheduler has to keep two pieces of information:

(a) An integer 1 (1<i<n) indicating whose tumn it is
to initiate next.

(b) A subset X of [1,m] indicating which agents are
currently performing the task.
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If Spec(i,X) represents the required behaviour of the scheduler for
parameter values i and X , then we can specify the scheduler by

Spec(i,X) = ¥ B. Spec(i,X- (i} (1eX)
1 jeX J .
Spec(i,X) = o Spec(i+1, Xu{ih) + 3 Ej Spec(i,X~ {3} (L1 X

jeX

These equations say that if p; is not perfoming he can initiate, and in
any case any pj(,je X) can signal completion. For this method we only
have to prove one dbservation equivalence:

Sch = Spec(1,0)

In §3.4 we give part of a proof using Method 1, which may be preferred
since it directly represents the constraints as specified. Method 2 is
possible, but a little harder.

Exercise 3.1 Can you 'build' the cycler defined here, using six copies
of the cycler c of Exercise 2.7? It is not hard, but the sense in
which the costruction behaves like the present cycler needs careful
study. 'This is dealt with in §3.3.

Exercise 3.2 Build a scheduler which imposes a third constraint on a
signal sequence c(AuB)Y :
(iii) When all occurrences of ay (1<i<n) are deleted, it
w
becanes (6132...13“) .

This constraint says that the P; must also terminate their tasks
in cyclic order.

N

Note: These exercises are plaving to some extent, but they may have
same significance for building asynchronous hardware fram components.
This remains to be seen.

We shall now divert to compare our behaviours with Petri Nets,
informally, using the scheduler as an example. Readers unfamiliar with
Net Theory may skip the next section.
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3.2 Building the scheduler as a Petri Net

We will use Petri nets in which the events or transitions are
labelled by menbers of Avu {t} . In fact, we shall just omit the
T labels.

A net c , for our cycler, is as follows, where circles stand for
places and bars for transitions:

et

8
With the initial marking as shown, the net is clearly live in the usual
sense. But in our interpretation a A-labelled event is merely potential;
it needs cooperation with an event which bears a camplementary label, or
with an observer performing a M-experiment.

The flow operations | ,\« and [S] can be satisfactorily defined
over a class of nets (as Mogens Nielsen has shown) in such a way as to
yield a Flow Algebra. Here, however, it will be enough to use only [S]
- the chvious relabelling operation — and the derived operation || ; if

1 2
then

n and n. are nets of sort L and M and if {al,...,ak}=names LM,

n, fn, = (N .ceiay
may be described as follows:

Identify the event labelled o, (resp Ei) in n, with the
event labelled Ei (resp o;) in n, , for each i , and
then drop the labels Gy ree sty and their complements.

[Note: This needs more careful phrasing if we allow that n , My not have
a xr—event even though Ael . Also, in general we must take care of the

possibility that n, - for example - may have two or more A—events.

1



38

However, if we start with nets n of sort L having exactly one event
labelled Ael , and confine the use of composition to pairs n1: L, n,: M
for which L and M are disjoint, then all nets built with [S] and [}

will have exactly one event for each label in their sort].

To illustrate with cyclers, we have, for c; = c[ai/a,si/g,Yi/y,;i_'_i/a]:

i+t

and for oH ||c2 :

Finally we give the diagram for a scheduler of size 5 on which
you can play the token game:



do

The Petri Net for the scheduler
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Notice the slight cheat: ¢ 1 has been given a different initial marking.
This would not have been needed if we had included a part of the net for
our start button, and in building the net we would then find the neéd for
rmore than one event labelled vy 1" which corresponds to the shared port

of ¢ in the picture of Sch, §3.1.

There is a growing body of techniques for analysis of Petri Nets.
For example, the behaviour of Marked Graphs is well understood [CoH];
a marked graph is a Petri net in which each place has indegree and outdegree
equal to 1, and our scheduler is indeed a marked graph. Further, much
can be discovered of the behaviour of arbitrary nets using techniques from
Linear Algebra due to Kurt Lautenbach (G, Bonn) to discover Invariants
(properties which holds for all accessible markings, or token distributions).
Kurt Jensen has pointed out that these techniques are strong enough to tell
us that our scheduler net indeed satisfies the two constraints specified.

Nevertheless we shall tackle the proof of correctness of the scheduler
by our own methods, since we shall see later that they apply also to systems
which are not so readily represented as Petri Nets (e.g. Systems whose
communication structure does not remain fixed).

3.3 Observation equivalence

It is now time to be cawpletely precise about the fomm of equivalence
of agents that we wish to adopt. 'The discussion in Chapter 1 was imprecise,
deliberately so;' but now that we have a case study in hand where correctness
of an agent has been espressed as equivalence between the agent and its
specification, we have enough motivation to study equivalence seriously.

We may forget our algebra temporarily, and imagine simply that we
have a set P of agents (or behaviours) together with a family
{3, pehu{r} } of binary relations over P . A is our label set, but
we can also forget temporarily that A = A uA . We shall consistently use A
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to range over A, and y,v to range over Auf{r} .

P —)‘>p' means "p admits a A-experiment, and can
transform into p' as a result”

p Lt»p' means "p can transform to p' uncbserve "

We shall write p——ip‘ »fOor s =y eoen elhu{t})* , to mean that

for some Ppgr--- /D, nz0)

u u Y
2 n
p= po—j'>p1———>p2 cree—>p = p' -

Now congider the result(s) of performing a sequence A gree- Ap of ataomic

experiments on p (n20). ‘The result may be any p' for which

k k
T OA T 1A eae 'rkn
) 1 2 n p' (kizo) ;

that is, an arbitrary number of silent moves may occur before, among and

after the )‘i .

pefinition for sel* , define the relation => by: if s =X ...A, then
p £>p' iff for some kg,.../k 20

k, k kn
0 1y ...
T Alr )\2 }.nr

p p'
We may talk of an s—experiment (se A¥), and then p £> p' means
" p admits an s-experiment and can transfomm to p' as a result" ; we may

also say more briefly " p can produce p' under s ".

Note that for the empty sequence e¢ A* , an e—experiment consists of
letting the agent proceed silently as it wishes, while observing nothing;
for we have

k
p = p' iff for same k=0 p—L> p' -
Note also the special case p=€-> p when k=0 .
Now we can State in words what we shall mean by equivalent agents.
p and q are equivalent iff for every seA*

(i) For every result p' of an s-experiment on p , there

is an equivalent result q' of a s-experiment on q .

(ii) For every result g' of an s-experiment on q , there is an
equivalent result p' of a s-experiment on p .
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This appears to be a circular definition (the formal definition will
take care of this point) but note first that it implies that, for

each s ,
p admits an s—experiment iff g does.

But it implies much more; for example, the two ST's

Q, o o
8 ¥ ¥ N

admit exactly the same s-experiments, but neither of the two possible
results of an o-experiment on the first tree is equivalent to the result
of an c—-experiment on the second.

The motivation for our definition is this: we imagine switching p
on, perfoming an experiment, and switching it off éga;in. For g to be
equivalent, it must be possible to switch ¢ on, do the same experiment,
and switch it off in a state equivalent to the state in which p was
switched off (and the same, interthanging p and q ).

Our formal definition is in terms of a decreasing sequence

Nor Sqrosee 0 Ry g oees of (finer and finer) equivalence relations:

Definition (Observation equivalence) p B 4 is always true;
P ™ @ iff Vse A*

(i) if p =N p' then for same q', g g q' and p' 4 q'

(ii) if qg;q' then for some p',p—-sé;»p' and p'qu

prq iff Vk20. ps g (i.e.m=n~k) .
k

Exercise 3.3 (a) Prove that each =y is an equivalence relation, by
induction on k . (b) Prove by induction that P € R oo i.e.
that p My 9 implies p ® d -
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This equivalence relation has many interesting properties, which
we need not examine until Chapter 7 - except one or two.

First, it is not necessarily true that = itself satisfies the -

recurrence relation defining S in temms of . X v that is, the property

prg 1ff Vse A* (*)
(i) if p £, p' then 3Jq'.g =N q' & p'~q'
(ii) if g S>q' then Ip'.p Sp' & p'~q'
(which is a formal version of our verbal recursive definition of equivalence
given earlier in this section). It is true if p and g are finite STs,
but not in general. However, our definition has nicer properties than
one which satisfies (¥).

For STs, our binary relations —A—> and -=> are cbvious;

£ 25 ¢ (resp. t ~Lst') iff t has a branch At' (resp. tt'). In this
case we shall call t' a A-son (resp. t-son) of t .

Exercise 3.4 Prove that t ~ tt for STs. (You need a very sirple
inductive proof that t~k Tt).

Let us consider one example of equivalent STs:

To check equivalence, i.e. t S for all k , we must prove the inductive
step: t:::ku implies tmk+1
identical trees under s ; under e, t produces only t and u only u,

u. Now for every s=€, t and u produce

and t F 0 by induction.
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Definition If p ésp' (0 ¢ A*) then p' is an s-derivative of p.

(Note that p is always an e-derivative of itself). We can thus

rephrase the definition of in terms of =, ¢

Tt Bt

P g iff, for all seA* ,
p and g have the same s-derivatives
n

up to e equivalence.

Exercise 3.5 Re-examine Exercise 1.4, and verify precisely which pairs are
observation equivalent. You should find exactly four pairs.

Exercise 3.6 (Deadlock) Prove that if pm~qg then the following statement
is true of both or of neither, for given 2

1700
"It is possible to do a )‘1"')‘n experiment and

reach a state where a )‘n +1-e>q3eriment is impossible"

One property of agents is not respected by our equivalence. It is
possible for p and q to be equivalent even though p possesses an
infinite silent camputation

p P, - P, L, ....'pk L. Prs1 L.,
{divergence) while q cannot diverge in this way. The equivalence can
be refined to exclude this possibility. See the remarks in §7.3.

3.4 Proving the scheduler

It is cumbersame to use the direct definition of ~; we shall instead
use a few of its key properties, which are derived fommally in Chapter 7.
We begin by listing them, so that Chapter 7 need not be read first.

(=1) t =Tt {see Exercise 3.4)

Now we can see that = is not a congruence relation; that is, replacing
t by t' (when t=~t') in u to get u' does not ensure u=xu'. For
example, NILs~ tTNIL, but oNIL + NIL # oNIL + tNIL .
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Exercise 3.7 Verify this fact.

So in general ta~t' does not imply t +u~t' +u . But all our
other operations do preserve = .

a0

(x2) t=t' inplies ut £ pt! (see below for
tlurt'ju and ultmu'lt
ta~t'\a
t[S1~t'[s]

Fortwnately, too, when we apply a guard ¥ to equivalent STs t,t' we
get not only ute~unt', but ut £ we , where £isa stronger relation than
= which is preserved by all our operations.

(~ 3) £ isa congruence relation, and
t 8¢ implies txt' .
Beyond these, we need one more property which may look a little surpris'ing;
we leave its discussion to Chapter 7 .

4 t+1t8t

Apart fram this, the proof below will use only rather natural properties of
our operations, including the Expansion Theorem, all justified by Chapter 5.

We treat only the first constraint, namely

w w - -\
sch Il 87 |...18.") & (a...a) (1)

Define the left hand side to be Sch' . We shall actually show that Sch'
satisfies the defining equation of (o nE .En)m , hamely

Sch' ~ &1...an Sch' . (2)
from which (1) follows, by general principles which we shall not treat here

(but see Exercise 7.7).
We may write Sch' as
| - 1] T

Sch' = (s|c1|... (IS ACTRPRAN (3)

(using general properties of | and \o )}, where
| - w

= (ci | B; )\Bi (4)

represents the ith cycler with E‘i permitted. Now we shall discover
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below that

ide]

' Ya 0.y ! (5)

C, . C,
1 1 1Y1+1 1

so we can use these expressions interchangably, by (~ 3), to assist our
expansion of Sch', which runs as follows:

ua

1] ~ - L] - 1
Sch (YlNILIYlalYQCll""IYnanylcn )\Yi"'\Yn

tt{e]

PGl | oo At PGP |
1(NIL|u1y2c1|y2a2Y3c2| vee [yncxnylcn)\yl..\yn

(the start button has worked)

1ie}

1511-&2....T&n(NIL|ci|cél.... Hicr'l)\yl"\yn

(leaving Ci to be reenabled)

[xie}

151132....T&nT(NILIEi;Qci'cé]... ‘Crll)\Y1°'\Yn

143
Q1

132...511 Sch' as required, by (x 1) and (= 2).

Iet us now show (5) , for i =1 say.

l

Vo o (R v T R u
cy = {yyo (B,v,0p + 7281c1)| B \B,
= ylal(ﬁzci + ;2 T ci) by expansion.

But ;2 Tci g

v,0) by (»1) and (x2), so
T;QC' + ’?210:'1 g T;zci + Vzci by (= 3)
TY,¢] by (= 4),

and by substituting in the expansion of ¢} we getby (= 1), (= 2)

:de]

e & vy, as required

1 1717271 °
We leave the verification of the second constraint on the scheduler as an
exercise in Chapter 8. It is not hard, but uses a slightly more general

property than (x 4).



CHAPTER 4

Case studies in value-cammunication

4.1 Review

So far, we have seen how behaviours (STs) may be built using six
kinds of operation, together with the all-important use of recursion.
The operations fall into two classes:

(1) Dynamic operations (Chapter 1)

Inaction NIL
Sumation +
Action pe Au{t}

The dynamic operations build nondeterministic sequential behaviours.

(2) Static operations (Chapter 2)

Camposition |
Restriction "\a ({(oed)
Relabelli [s]

The static operations establish a fixed linkage structure among

concurrently active behaviours.
The examples given were static cambinations of sequential behaviours,
yielding systems with fixed linkage structure. But dynamically-evolving
structures can be gained by defining recursive behaviours involving

canposition. The possibilities are quite rich; we give an example, not
for its usefulness (which is doubtful) but to illustrate the power of CCS.

First, let us define an operation which has wide application. If
X:L,y:Mand L n ﬁ=¢, with BeL and aeM, the chaining operation
7~ is given by

x7y = (%[8/81 | Y[8/aD\8

where § ¢names(LuM). In pictures:

O O OO

(See §8.3 for a proof that 7 is associative; this even holds if LaM=g.)
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Now consider in particular p:{o,8,y} and g:{a} given by
p=aBy(P°P) . G=0g
and consider the following derivation:

L. p~ pNg ‘@"@"Xﬂ
2
Lp~ppTpg
I
L.p~popp PP PTPTY
etcaa...

After n ao's, 2 v's (and no more) can have occurred.

Exercise 4.1 (For fun). Describe the behaviour of p“ ‘g a bit more
precisely ~ e.g. how many y's nust have occurred after n o's?

[ Exercise 4.2 Build a counter of sort {1,6,z}

which (i) Can always be incremented by an 1-experiment;
(ii) Can be decremented by a $-experiment if non-zero;
(iii) Can admit a Z-experiment only when it is zero.

Hint: in state n, it will be samething like a chain of
about n cells. Incrementing must increase the cell-count
by one; decrementing must decrease the cell-count by one by
causing one cell to die - i.e. became NIL. You may need a
doubly linked chain, built by a suitably generalised chaining
operator, and looking like

But our calculus so far has an important restriction which makes
it J'.nédequate for programming; all comunication is pure synchronization,
and no data-values are passed fram one agent to another. True, we could
in principle 'read' the contents of the counter of Exercise 4.2 by seeing
how many decrements (8) are needed before a ¢ (test for zero) is offerred.

This would be cumbersame, to say the least, and for the counter as specified
it would destroy the count stored in it!
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;
So we now proceed to a generalisation of the algebra. 1In doing'
so we are forced to abandon our ST interpretation. What takes its
place must wait till Chapters 5 and 6; mearwhile the reader must
realise that — for example - the equality symbol between our more
general behaviour expressions is not explained in this chapter.

4.2 Passing values

Consider the simple behaviour

P=0BYP

It's no more than the cycler of Exercise 2.7, ¥
but if we think of positive labels (a,8) as accepting input pulses,
and negative labels (Y) as giving output pulses, then p becanes
a behaviour which "gives an output whenever it has received two inputs"
(the inputs being demanded in a particular order).

Suppose that an input at o consists of more than a pulse; it is
a value (an integer, say). ‘That is, attempting an c~experiment on p
consists of offerring a value to p at o. We may then wish to represent

p's behaviour as
P =0Xew——

where X 1is a variable (supposed to become bound to the value received

in an o-experiment), and -- - is some behaviour expression dependent

ypon X , i.e. containing x as a free variable. We say that the variable
x 1is bound by ¢, and its scope is --- .

(This is very familiar to anyone who knows the A~calculus; the difference
here is that any positive label ©o may bind a variable, while in the
A-calculus there is only one binder - the symbol "A",)

We can go further, in our aim to.transform p into a behaviour whose
output values depend on its input values, and write
p = ox.By. -~~~

Here £ binds the variable y . Note that the scope of x is By.~--,
while the scope of y is just ---, (It would be stupid to write ox.Bx.—--
since then any occurence of x in —-- would refer to the value bound by

B to x; the value bound by o to x is inaccessible.)
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Suppose we want the sum of x and y to be output at '\-( .
That is, in general for negative lakels, attempting a ;—experimant
on p consists of demanding a value from p at ; « Thus negative
labels do not bind variables - instead they qualify value expressions
(which may contain variables). So we write

P = oX.8y.Y (x4y) .p
It is now proper to talk of an " o v-experiment” rather than an
"a~experiment”, where v is the value submitted by the cbserver, and
similarly of a "y v-experiment" where v is the value received by the
observer. So, generalising the relation —)S» of §3.3, we say

p-&’*p' means "p admits a Av-experiment, and can
transform to p' as result".

(Note the different sense, according to the sign of 1.)
As a general rule then, we can state

ox.B v, Blv/x}

where v is any value, B is a behaviour expression, and B{v/x} means
the result 6f replacing all unbound occurrences of x in B by wv.
And similarly (more simply)
w_('v.B A
for the particular value v . So the following derivation is possible
on p:
P = oxX.By.Y (xty) .p
3 -
<> gy.¥ (34y).p

B, J@Emp

X7, P
{See §4.4 for more about éerivations.)
Now we have hardly anything more to add to our language before finding
that it can be used conveniently for programming. As for its inter-

pretation, we can introduce a generalised fomm of ST which we call
Commmnication Trees (CT), but for the present we wish to rely on intuitive

understanding.
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We shall usually be handing expressions of the form
JoX.B, + JB.E.B' + J.B
§ 1 A ¥ 3 3373 A k

where Bi,B:!, ,B]'; are behaviour expressions, the ¥, are variables,
and the Ej are value expressions. As for expressions involving
camposition (|) and the other operations, it will be enough to lock
at a simple example and then give a generalised Expansion Theorem (§2.5).

Consider

B = (ox.B, +8Y.B,)| av.B,

We expect a sum of 4 temms, one involving t :
B = ox. (B |av.B,) + By.(B,|av.B,)
+ Ev.((ozx.l?.1 +By.B,) | By) + t.(8,{v/x}|By)

Note that the "label” T does not bind a variable or qualify a value
expression. We shall also reserve the right to use other labels in

this simple way when they only represent synchronization. In fact we
shall allow a positive label to bind a tuple x = Kyrees X of (distinct)
variables, and a negative label, to qualify a tuple E = El" .. ,En of
value expressions; then for pure synchronization we just use O-tuples.

We shall use the term guard to camprise the prefixes o%,8E and T,
and use g to stand for a guard. Dijkstra [Dij] invented the notion
of guard, to stand for save condition to be met before the execution of
a program part. It is natural to adapt it to the case where the condition
is the acceptance of an offerred commmnication, as Hoare [Hoa 3] has
also done in his CSP. We then find that the analogue of Dijkstra's
guarded cammands is provided by summation; we refer to an expression
)Jgk.Bk as a sum of guards, and call each gk.Bk a sumand of the
expression. We denote the name of g's label by namel(qg).

Expansion Theorem (stated and proved as Theorem 5.8).

let B= (Bll...le)\A,where each B, is a sum of guards. Then

B = Z{c_;r.((B1 ...|BJ!. ...le)\A)

+Z{T.((B1|...|BJ!‘{E/5'<'}|...]B:'j|...le) A); aSE.B;!L a summand of

B,, oE.B' a summand of B, , 1231
1 3 J

9.B} a sumand of léi, name(g) ¢ A}

provided that, in the first term, no free variable in Bk(kati) is bound
by g. i}



52

The meaning of the Theorem is that all unrestricted actions and all;
internal cammmications in B may occur. )

Note that our language contains two distinct kinds of expression -
value expressions and behaviour expressions. Consider AEB; E is
the first kind, B the second. We allow the following simple but
important constructs in our language:

(1) Conditional behaviour expressions.

if E then B, else B,
where E is boolean-valued. Consider for example
ox.(if x20 then Bx.B else vx.B)

(ii) Parameterised behaviour definitions. For exanple:

aly) = ax.(if x2y then Ex.a(y)else Yx a(y))

(iii) Iocal variable declarations. We shall allow constructs like

let x=6 and y=10 in B

B where x=6 and yv=10 .

They mean exactly the same — namely, the same as substituting
6 for x and 10 for y throughout B.

We hope that the language is simple enough to be understocod intuitively,
without formmal syntax. Exact formulation cames later!

4.3 An example - Data Flow

We will now show how to build and verify a simple system which bears
a strong relation to the Data Flow Schemata of Dennis et al [DFLI.
The task is to build a net which will compute 2¥ for arbitrary non-negative
integer x , given camponents for camputing more primitive functions and
predicates, and sare standard gating and switching camponents, That is,
we want a net whose behaviour is observation equivalent to

a=1x02" a (1)

(We shall often use 1 for inpﬁt, o for output) . First, we define sare
standard camponents.
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(i) Unary function agent
For arbitrary unary function £ , we define the agent

¢ 1
DOE = 1%.5(£()).(DO £) T @

[0}
we shall only use simple f's ; we are actually trying to build

the behaviour

DO bexp
where bexp(x) = 2* , @s you can see by camparing (1) and (2).

(ii) Unary predicate agent

For arbitrary unary predicate p , we define
1
ASKp = 1x. if p(x) then 0,%. (ASK p)
else 0,%e (ASKp) 61 32
Note that the value x 1is passed unchanged out of one of the
output ports.

(iii) A gate v
GATE = 1X.0X.y.GATE Y

’ 5

1

The gate transmits a value unchanged, but must
be re-opened at vy to repeat.

(iv) A trigger
TRIG = 1X.y.oX.TRIG Y; TRIG ;

Like a gate, but must be triggered (or trigger someone °
else!) after receipt and before transmission.

(v) A source

For arbitrary constant value v , a permanent source of v's

is given by 1
DOV = 1.0v.(DOV)

o]
We use DO , because the unary function agent is easily
generalised to n-ary function agents, and constants are
just o-ary functions.



(vi) A sink 1

I

For discarding uwanted values.

1
(vii) A switch
SWITCH = 1%. (yl.Slx.swmu{ + y2.;2x.SWI'ICH) Y1 Yo
> 5,
A generalisation of a trigger;

triggering Y selects output port ;i .

This is all we need for our example; it is not a complete (or necessarily
best) set, and it would be interesting to design a good set of components
which could be shown adequate for a wide class of data-flow computations.

We would like to factor our design into a control part and a
controlled part. For the control part, it will be convenient to build
an agent observation-equivalent to
X times
CONTROL = 1xJy.+e°yJs.CONTROL (3)
i.e. for input x it will admit x vy-experiments followed by a §—experiment,
and return to its original 'state'. We show the net for realising CONTROL;
it can be shown by Expansion to satisfy an equation like (3) with many
intervening 1's, and this is observation equivalent to CONTROL, as we shall
see in Chapter 7.
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One can check for the right behaviour informally, by "arrow-swinging".
Note that the initial state is restored, and that if either trigger is
replaced by a gate then 'overtaking' can occur, yielding the wrong

behaviour.
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The controlled part, or body, is to admit a value v at 1',
then after n y-experiments followed by a E—experinent it will emit
P xv at o and restore itself. ‘That is , we want to realise

BODY = 1'y. b(y) where (4)
b(y) = ¥.b(2y) + §.oy.BODY

it el

o e o o e o e mn o
-
I )

Exercise 4.3 Put this net together, as a restricted camwposition of
relabelled standard camponents, and show that it satisfies an
equation like (4) (but with intervening t's), using the Expansion

Theorem.

.
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Having established the behaviour of BODY and CONTROL, it is a sinple
matter to put them together in such a way that an input x to the
whole system first gates a 1 into BODY, then enters CONTROL itself.
The outer pair of gates (present also in BODY and CONTROL) is to
prevent overlapping of successive computations.

1

{
|
1
b

DO bexp

!

{

]
_

g

A
e - — - o m s e W e T

A

-
e s o e

——— -
ol
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Exercise 4.4 Treating BODY and CONTROL as given by (3) and (4), put
the net together as in the last exercise, and show that it behaves

. like DO bexp, but with intervening t's. See (1) and (2).

The example shows how nets may be built in modules which are
verified separately. ‘There are two remarks:

(i) The use of the Expansion Theorem is tedious, but as we
mentioned earlier it can be mechanised.

(ii) We have implicitly assumed that if two behaviours are
observation equivalerit, then replacing one by another in
any system context will yield an cbservation equivalent
system. (This is what justified our treatment of BODY
and CONTROL - replacing them by their specified behaviours).
This assumption is justified for the contexts we have
considered, but it is not trivial to prove that this is so.

Exercise 4.5 Construct data flow nets to compute the value of y from
input values x and y , for each of the following programs:

(i) vhile p(x) do (y:= £(x,¥) ; x:= g(x))
(ii) while ply) do (y:= if qlx,y) then £(x,y) else £(y,x)
x:= g(x))

~e

You will almost certainly need some other 'standard' agents, and a
different way of handling predicates - since the construct 'ASK q'
doesn't generalise very well for non-unary predicates.

4.4 Derivations
In §4.2 we gave an example of a derivation of p = OX.BY.Y (X +Y).D ¢
p By 3+ .p 857G +0). p Doy
Similarly, B = ({ax.B, + 8y.B,) | Ev,yz.Bs)\B has derivations
B9—5-> (Bl{S/x} | Ev.yz.Bs)\S H

B 5 @ v) | vz.B\e Yo (,(v/) | B{T/ZMN\6 .
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A general derivation takes the fomm
u,v U,V u v
B _1_3,}31&,32 —>,, . -hng
n
(which has length n) or may be infinite. We shall often write a .

derivation of length n as

TR U,V uv WV, el Ve ees oH V
g% 22 Bng o p+i-2Z2 Dn.p
n n
Tn E
we can abbreviate B —>B' by B =B’ n=0)

m n
and abbreviate B LMVeT.gv py B®Lp' (mmn:=0.

{see also §3.3).

A cawplete derivation is either an infinite derivation, or a finite
derivation which cannot be extended (this means Bn = NIL).

Exercise 4.6 Using equations (3) and (4) in 4.3, write same of the
derivations of BODY, CONTROL and (BODY | CONTROL)\v\§ . What complete
derivations are there?

A camplete finite derivation of B represents a possibility that B
can reach a point where no further action is possible; it may deadlock.

4.5 BAn example — Zero searching

We want to set two agents p and g to work together in finding
a root for the equation £(X) = O in the range [A,B] , for a continuous
function f£ , knowing that such a root exists - i.e. £(8) x£(B) <O.
It is natural to make p and g calculate £(A') and f£(B') respectively,
and concurrently, for two internal points A' and B'.

If p finishes first, and finds that f£(A') differs in sign from £(8),
he can leave a message for g to come and help him in the new interval
[A,A'], and begin to work within this interval himself.



60

If he finds £(A') to have the same sign as f(a), then he
should go to help q in the interval [A',B].

+ + -
r—— @
A A' B' B

3 A"
He could choose a point A" in [A',B'] or in [B',B]. Kung [Kun,
Section 3] made the elegant suggestion that the points A',B' should
not trisect [A,B], but rather divide it so that the ratios AA':AB,
B'B:AB and A'B':A'B are equal; then in the case above A may pick
the new point A" so that the new interval [A',B] is subdivided by the
working points in the same ratio as [A,B] was subdivided.

This detemmines A',B' as the golden sections of A,B;
[

, A . ?+e0=1;
A A' B B
2 P 0= v5-1 = .618
0L 8°¢ V)
\—‘_‘——V_—_J

At any moment then, there are two possibilities:
(i) p and g are both working on golden sections of [A,B];

(ii) One of them is working on a golden section point, and
the other on a point outside the interval (because the
other agent has shrunk the interval).

The camputation stops when the interval has been reduced to less than
same predetermined value 'eps'.

As Kung observed, the algorithm can be implemented by giving p
a local variable X (his working point), g a local variable Y similarly,
and representing the interval by a few global variables which either p or
q may inspect and update, using a critical section for the purpose.
Thus an outline program for P , using conventional and obvious notation, is:

p = while interval > eps do CRITICAL SECTION
begin campute £(X) ; update globals  end

~e

similarly for g , and the whole program is
cobegin p || g coend .
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T. Mildner has given the complete algorithm [Mill. I am grateful to
A. Salwicki for drawing my attention to this example, which is a good
one to illustrate different concurrent programming disciplines.

Now in a sense p and g are sharing a resource, i.e. the
interval, represented by global variables. Hoare and others have
made the point that code and data associated with shared resources are
better located at one site, rather than distributed over the sharing
agents; Hoare proposed Monitors as a device to achieve this modularity
[Hoa 2],

Here we propose to represent the interval as a separate agent,
without the need for any extra programming construct for the purpose.

The idea is that p or ¢ submits the result of his evaluation
to the interval agent, which then hands him a new evaluation point.
p, working on X , is represented by

o

PO = &, (%,£(0) . X' pX") 1
o

2

and q , working on Y, by B

1
a(¥) = B, (V,£(0) .8,¥"' «a(¥") B

2
Notice that each submits a pair, argument and function-value,to the

interval.
The interval Int is parameterised on A,B,a,b vhere initially
(and always later) a = f£f(@), b= £(B) and axbsO.

By carefully reversing the direction of the interval when necessary,
Int ensures that at any time

p is working either at 2[A,B] (left section) or outside the interval;
g " " " " r[A,B] (right section) " " " " .

The interval agent has sort {a1,§2,61,§2,5} , and delivers the root
finally at p . It is defined as follows:
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Tt - -~ Wet

Int(A,B,a,b) = : > » *——>
- L L]
Af. |A-B| < eps then pA.NIL else ? A i
(o, (%,%). if X= A' then : © @
if xxa<O + - :
then ;21[A,A'].Int(A,A',a,x) r (P](q; + : _
-_ .
else a,2[B,A'].Int(B,A",b,x) ! M -cwr-cun @®
else aZA'.Int(A,B,a,b) * > .; RS .
D, @ B
+51(Y'y)- _i_f_ Y = B' then : <') (ll) :
if yxbsO ; ' N '
h . . -
then Ezr[B' ,B].In‘t(B' +B,v.b) + : :—5 (P)(CI)! '
else B,r(B',Al.Int(B',A,y,3) !
else §B'.Int(A,B,a,b) N @ @ !
% — -——> » bl - ;
) where A',B' = g[A,Bl,r[A,B] (P @

The camplete system is  Sys(A,B,ab,X,¥) =

(p(X) | Int(®d,B,a,b) Iq(Yl)\ui\GQ\Bi\BQ
P

Int(a,B,a,b)

(The arrows are marked assuming the case |A-B| > eps.)

What do we want to prove about Sys? Simply that every possible

derivation camputes a near-root of £ in [A,B].
we mean a % such that [Z -eps,%+eps] contains a root.)

we require

(By a near-root Z of £,
More precisely,
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if (i) a=£f(A), b = £(B), axbs<O,
and (ii) X = 4[A,B] or Y = rx[A,B],
then every camplete derivation of
Sys(a,B,a,b,X,Y) takes the form

Sys(a,B,a,b,%,Y) =% NiL
where Z¢[A,B] is a near-root of £.

Tt's convenient to prove this by induction on the size of [A,B], defined
as the least n such that o x|A-B| < eps. For size = O we have

Sys(A,B,a,b,X,Y) 22 NIL

as the only complete derivation, and we are done. For size > O, we can
use the Expansion Theorem to show the following, which is enough to complete
the proof:

Under conditions (i) and (ii), every complete derivation of

Sys(a,B,a,b,X,Y) extends a derivation

_T_:L sys @A 'Bl ,a' ,b' JX ,Y')
where the parameters again satisfy (i) and (ii), and
(a) if X = ¢[A,B] and Y = rla,B] then [A',B'] has smaller size;

(b) otherwise either [A',B'] has smaller size or [a',B'] =[A,B],
X' = ¢[A,B] and Y' = r[A,B].

Exercise 4.7 Verify the above statement by expanding Sys(a,B,a,b,X,Y).
Note that the interval decreases in size after two computations, though
not always after one.

fxercise 4.8 It isn't necessary for p and g to access Int through
distinct ports. Redesign Int so that ports a, , B, are identified,
and similarly o,, B,; it's easy but not campletely trivial.

Exercise 4.9 Kung remarks that a root-searching algorithm for three
cooperating agents can be designed so that the interval subdivision -
adopts one of the two patterns

L/ Ly /1 /3 &/6 /6  &/3
— " | g,

- ». & 5. Py Py P —

Program this algorithm.



Exercise 4.10 Suppose that p (g similarly) can pause during its
evaluation of f£(X) at certain times, to ask the interval
"should I continue or start on a new point?" Adjust the
interval agent to réspond to these interrupts.



CHAPTER 5 !

Syntax and Semantics of CCS

5.1 Introduction

We have seen sare exanmples of expressions of CCS, representing both
programs and their specifications. We saw that, with the introduction
of value-passing, we had to abandon the simple interpretation of behaviour
expressions as synchronization trees, but in §4.2 we talked of atamic
experiments on behaviour expressions (or on the behaviours for which they
stand), and this was developed further in §4.4 on derivations.

We are now ready to present CCS precisely, and to define precisely
the atomic actions (and hence the derivations) of every CCS program. On
this basis, we proceed in this chapter and in Chapter 7 to develop our
central notion, cbservation equivalence of programs. From this it is a
short step to a congruence relation; two programs are observation congruent
i¥f they are chservation equivalent (i.e. indistinguishable by dbservation)
in every context. Our proposal is that an observation congruence class is
a behaviour, so that CCS is indeed an algebra of behaviours‘, in which each

program stands for its congruence class.

This main develcopment is independent of the notion of ST. STs may
now be regarded as a first approximation (not sufficiently abstract) to a
model of CCS without value-passing, and in Chapter 6 we show how they may
be generalised to CTs (communication trees) to give a first approximation
to a model of (CS with value-passing; again, the main development is in-
dependent of CTs, which are only discussed to aid understanding. VWhen we
eventually define observation equivalence over programs in Chapter 7, it will
look just like the corresponding definition in §3.3 over STs, which general-
ises to Crs in an obvious way. Indeed, we expect to find that two programs
are equivalent iff the corresponding CTs are so; in that case CTs, though
not technically essential, fit naturally into our picture.

This chapter is devoted to a congruence over programs which we call
strong congruence, since it is stronger than the observation congruence
studied in Chapter 7. By approaching our proposal in two stages we intro-
duce the properties of behaviour gradually, and with greater insight than if
we tackled observation congruence immediately. In fact we even subdivide
the first stage in this chapter, approaching strong congruence via an even
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stronger relation called direct equivalence.

The CCS lanquage was introduced in the author's "Synthesis of
Cammnicating Behaviour" [Mil 31. However, the semantic specification
by derivations was not given there in detail.

5.2 Syntax

Value expressions E

Value expressions are built “From

(i) Variables X,V,«..
(ii) Constant symbols, and function symbols standing
for known total fumctions over values

using conventional notation. We also allow tuples (El""'En) of
value expressions. Thus each value expression without variables stands
for a uniquely defined value; we shall not ;nor:ryrabout the distinction
between such expressions and their values.

We shall also avoid details about the types of values and value express-
ions, though we shall have to mention same syntactic constraints depending
on such details (which are standard).

Iabels, sorts and relabelling

As in Chapter 2, our labels are A = A yd , together with <.
We use o,B,.. tO range over A, A owver A, and p,v,... tO range over
Au{t}. A sortLis a subset of A ; to each behaviour expression
B will be assigned a sort L(B). +

A relabelling S : L+M between sorts L. and M is as in §2.2.
However, some positive labels « will be used to bind (tuples of) variables,
and then o will qualify (tuples of) value expressions; we must ensure
that S preserves the sign of such labels (i.e. S{a) €A ). Moreover, in
a camplete treatment we should have to assign types to value variables and
value expressions, hence also to labels, and to ensure that relabellings
respect the types of labels. We will avoid these details; they need care,
but would only obscure the more important aspects of semantics which we want
to discuss here.

+ We shall only meet finite sorts in examples. However, all we need to
assume - for technical reasons -~ is that A is never exhausted. Infinite
sorts may be of use; see the end of Chapter 6.
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Behaviour identifiers b

We presuppose a collection of such identifiers, each having
preassigned .

(i) an arity n(b) - the number of value parameters.
(ii) a sort L(b).

We assume that the meaning of such identifiers is given, often recursively,
by a behaviour expression. For example, in §4.5 we gave meaning to the
behaviour identifier p hy

p(x) = ai(x,f(x)).uQX'. pix')
vhere n(p) = 1, Lip) = {&1,u2} .

Again, a camplete treatment would specify not just an arity but a
type (i.e. list of parameter types) for each b .

Behaviour expressions B

Behaviour expressions are formed by our six kinds of behaviour operator
(§4.1), by parameterising behaviour identifiers, and by conditionals.
It's convenient to present the formation rules as a table (see below),
giving for each expression B its sort L(B) and its free variable set
FV(B).

We should regard the language given by the table as a core language,
which we are free to extend by defining derived behaviour operators (the
chaining cawbinator -~ of §4.1 for example) and by alternative syntax

for camonly occurring patterns.
In what follows, we shall use

B{E, /%, ;v /B /X )

to denote the result of substituting expression Ei for variable

% (lsis<n) at all its free occurrences within B . Sometimes we shall
abbreviate vectors (tuples) of variables and expressions as X and E ,
and write a substitution as

B{E/X} .

(2s usual, such substitutions may require change of bound variables, to
avoid clashes.)
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SYNTAX TABLE FOR BEHAVIOUR EXPRESSIONS

Form B" L(B") FV(B")

Inaction NIL @ ¢

Summation B + B' L(B) u L(B") FV(B) vFV{(B')

Action le,...,xn . B L(B) u {f} FV(B) ‘[X1""'xn}
aE ..o sE o B L(B)u {a} FV(B) uUFV(Ei)
7.B L(B) V@)

Camposition B|B* L(B) v L(B") FV(B) u FV(B")

Restriction| B\« ) L(B) - {a,a} FV(B)

Relabelling B[S] S(L(B)) FV(B)

Identifier (B ,enesBp (1)) L(b) LiJFV(Ei)

Conditional if E then B else B' | L(B) u L(B") FV(E) u FV(B) u FV(B')

The table shows how B" of sort L(B") may be built fram B,B’'
of sorts L(B),L(B'). Parentheses are to be used to make parsing
unanbiguous, or to emphasize structure; to avoid excessive use of
parentheses we assume the operator precedences

Restriction

} > Action > Camposition > Summation .
Relabelling

Thus for example

B |r.B"\a +B"[S]  means Bl (z.(B"\))) + (B"(S]) .
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5.3 Semantics by derivations

We proceed to define a binary relation ‘i‘; over behaviour expressions,

for each v chu{t} and value v (of type appropriate to n). B X%pB!
may be read "B produces (or can produce) B' under uv"; thus if B,B’
are in the relation _‘i‘.'; , a particular atamic action of B - resulting
in B' ~ is indicated.

Referring back to §3.3, we are taking behaviour expressions to be
our agents; towards the end of §3.3 we chose STs as agents, and we shall

see in the next chapter how to regard CTs as agents.

Note that - is a particular case of our relations, since the only
value of type appropriate to 1 is the O-tuple.

The relations % are defined by induction on the structure of
behaviour expressions. This means that all the atomic actions of a cam-
pound expression can be inferred fram the atamic actions of its camponent(s).

Such a relation, though not indexed as here by uv , probably first
appeared in connection with the A-calculus. It was called a reduction
relation, and the clauses of its definition were called reduction rules.
Gordon Plotkin first made me aware of the power and flexibility of such
relations in giving meaning-by-evaluation to programming languages. (In
passing we may note that the original definition of ALGOL 68, though strongly
verbal, is in essence a set of reduction rules.)

Tnaction

NIL has no atomic actions.

Sumation

WY ny s BY o
From B:l—->.|31 infer B1+ B2—~>-B1

By infer B + B, X B}

From B, 5

2

Thus the atamic actions of a sum are exactly those of its sumands.
We adopt the following presentation of such inference rules:

uv uv
Sum —» (L By —~ Bi B, —)Bé

(2) —_—
By+B, LBy’ By+By “L.B)
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Action

(1) uxl,...,xn.B alvyre.svy) B{V1/X1""’Vn/xn}

(2) ;vi,...,vn.BM B

(3) .B5B

Act »

Notes: (i) These are not inference rules, but axiams.
(ii) Act > (1) holds for all tuples (vi,. . 'Vn) (of appropriate
type for o), while Act-> (2) holds just for the tuple
qualified by o . .
(iii) See §5.5 below for why we consider only values

Virees sV (not expressions El""'En) in Act~> (2) .

1

Camposition
1) B 5By 2) B M%my
UV o0 Hv, "
Cam + B1[B2-—>B1|B2 131]132 ——>131|132
3 BB BB}
T T 1
B, 1B, - B, IB,

Notes: (i) Cam ~ (1) and (2) express the idea that an action
of B, or of B, in the cawposition Blle yields an
"~ action of the camposite in which the other cawponent
is wnaffected.
(ii) Can~(3) expr that camunication of camponents

yields a t—action of the camposite.

>
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Restriction

Res o X pr , uelo,al

Bya 2% Bi\g

Note: the side condition ensures that B\a has no ov or ov

actions.
Relabelling
Rel » B Mg

Bs15WY pirgy

Note: recall our convention that St =t
Identifier. Suppose that identifier b is defined by the (possibly
recursive) clause

b(xl,...,xn(b))<(= B (EVB) < {Xl""’xn(b)})
We shall discuss such definitions shortly. Our rule is

. LAY
Ide > Bb{vi/xl,...,vn(b)/xn(b)} AMSB

uv
b(v1,. .. 'vn(b))—+ B'

Note: the rule says, in effect, that each parameterized identifier
has exactly the same actions as the appropriate. instance of
the right-hand side of its definition.

Conditional
UV, o AR
Con » (1 B B 2 B, ™5
if true then B1 else B2—“‘~L Bi if false then B1 else B2 ﬂBé

Fote: As with all value expressions without variables, we assume
that boolean-valued expressions evaluate 'automatically' to
their boolean values. See §5.5 below for why we need not
consider value-expressions containing variables in these rules.
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5.4 Defining behaviour identifiers

We shall now assume that every behaviour identifier b is defined
by a clause

b(xl""'xn(b)) & Bb

where X1""’Xn(b) are distinct variables, and where W(Bb)s{xf'"'xn(b)}.

The symbol "€ 'is preferred to ' = ' since we are not yet talking of the
behaviours denoted by behaviour expressions (so ' = ', in the sense of
equality of meaning, would be out of place), and also because we will
later in this chapter use ' =' to mean identity between expressions.

We thus have a collection of clauses defining our b's, and they may be

mﬁtually recursive. Although not actually essential, we shall impose a
slight constraint on the collection, which will forbid such definitions as ‘

b(x) < ox.NIL + b(x+1)
or
{bl & b, +a.by
b, & b, |8.b,
in which a behaviour may ‘call itself recursively without passing a guard’.
Thus the following are permitted:

b(x) < ox.NIL + t.b(x+1)
and

{bl & b, + a.b,

b, & 1t.b,[8.b,

More precisely, we say that b is unguarded in B if it occurs in B
without an enclosing guard. The restriction on our defining clauses for
the b's is that there must be no infinite sequence bi(i) ’bi(2
that, for each j B bi(j+1) is unguarded in bi(j) . (In the forbidden
exanples above there are such sequences: b,b,b,.... and b1'b2'b1'b2""
respectively.) Further, for correctness of sorts, we require

yreee such

L(Bb) < L{b)

When the above constraints are met, we shall say that the behaviour
identifiers are guardedly well-defined.
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5.5 Sorts and programs

Our formation rules ascribe a unique sort L(B) each behaviour

expression B ; we write
B : L(B)

to mean 'B possesses sort L(B)' . For many reasons, it is convenient

to allow B to possess all larger sorts as well; so we declare
B:L&LcM implies B : M
For example, this allows us to make sense of an exprfassion like
NIL[8/0]
since B/oz‘: {e}+{B} is a relabelling, and NIL : {a} since NIL : (.

An important property of atamic actions as defined in §5.3 is the

following:
Proposition 5.1 If BY%B' , and B:L , then
peLu{r} and B': L

Proof By induction on the length of the inference which ensures B X% pr ’
using the ascription of sorts by the formation rules. 14

Although our rules for atanic actions apply to arbitrary behaviour
expressions, they fail to describe fully the meaning of expressions with
free variables. For example, the rule Act-+ gives no action for

alx+1). NIL
and Con + says nothing for
if x>0 then ox.NIL else B(-x).NIL

Clearly they could not detemmine the actions of these expressions, since
actions involve values, not variables, and in the second example even the
label of the possible action depends upon the 'value'’ of x .

We choose to regard the meaning of a behaviour expression B with
free variables ¥ as detemmined by the meanings of B{%/%} for all

value-vectors ¥ .

Definition We define a program to be a closed behaviour expression,

i.e. one with no free variables.
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Now the fact that our rules describe the meanings of programs
satisfactorily is due to the following:

Proposition 5.2 If B is a program and B t%p , then B' is aiso
a program.
Proof By induction on the length of the inference which ensures

B Y% B' . The condition on the free variables of each Bb , and
the substitution involved in Act -~ (1) , are critical. il

5.6 Direct equivalence of behaviour programs
(In 55.6 and §5.7 we are concerned only with programs) .

We now take up the question, posed in §5.1, of which behaviowur
programs possess the same derivations; this will yield an equivalence
relation, which’ will also be a congruence - that is, any program may be
replaced by an equivalent one in any context, without affecting the
behaviour (derivations) of the whole. For example,

B+B' and B'+B

are different programs, but we clearly expect them to be interchangeable

in this sense.

A first approximation to what we want may be called direct ecquivalence ;

we denote it by = , and define it as follows:

Definition B, = B (B1 and B, are directly equivalent) iff for every

1 2
w,vand B

2

B %8 & BYE .
(Warning: = is not a congruence relation. For example, we may have

B15B2,
B|B1$ B|B, . For exawple,
o.NIL | B, -%»> NIL|B
1, 1! not identical!
«.NIL | B, -— NIL|B,

but in general

But the congruence relation we want will be implied by =, and so the
following laws for = will hold for the congruence also.)
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In what follows it is often convenient to let g stand for an
arbitrary guard oX , 6B or t. 'The result Sg of relabelling a
quard is given by S(X) = (Sm)¥ , S@E) = (SHE and St =71 .
The name of the label in g is denoted by name(q) .

Theorem 5.3 (Direct Bquivalences). The following direct equivalences
hold (classified by the leading operator on the left side):

Sun = (1) B,+ B,= B, +B; (2) B, + (132 +133) = (}31 +13,2)+133
(3) B+NIL =B (4) B+B =B

Act = oX.B = oy.Bi¥/x} (change of bound variables)

where y are distinct varisbles not in B

Res = (1) NILAR = NIL (2) (B, +B,)\8 = By\B + B,\B

(3) (g.B)\B = INIL if B8 = name(qg)
4.B\B otherwise

Rel = (1) NIL[S]=NIL (2) (B, +B,)) [s] 5131[31 +B,ls]
(3) (g.B)(s] = sg.BlS]

Now in view of Sum = the following notations are unambiguous:

Z B, meaning B,+...tB (NIL, if n=0)
< i 1 n
1<isn

X{Bi ;ieI} more generally, where I is finite.

If each Bi is of fomm gi.B:!L , we call such a sun a sum of guards,
and each Bi a summand.

Iet B and C be sums of guards. Then

g

Bilc = J{g.(B'lC) ; g¢g.B' a sumand of B}
+ Y¥{g.(B|C*) ; g.C' a sumand of C}
+ ). B R Cc'); oX.B' a sumand of B
and o¥.C' a summand of C}
+ Z{t.(B'lc'{\NI&}) ; ov.B' a summand of B

and oX.C' a sumand of C}
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=
(11}

let identifier b be defined by b(X)&= B ; then

b Bb{?r/i}

-t

g
"l

m

(1) if true then B, else B, = B,

(2) if false then B1 else B2 = 32

Proof To prove each law is a routine application of the definition

of the relations 2> . We consider three laws:

(i) Sum=(2): B1+(B2+Ba) B (B1+B2) + B,
Iet B+ (B2+B3)~BY>B. This can only be due to
either rule Sum-~ (1), because B “_V>B
or rule Sum +(2) , because B, +Bs—"—‘-’>B ’
and in the latter case, similarly, either BQP—‘-’)B or B3“_">B .

In each of the three cases, rules Sum »(1) and Sun »(2) yield

. uy
+ + B, 3B .
(31 1'32) B, B
The reverse implication is similar.

(ii) Res = (3) : (oX.B)\B = [NIL (B=a)
aX. (B\8) (BZ2a)

By Act~+ (1) , the only actions of ox.B are of fom
oX.B % p{v/A} (for arbitrary v ).

Thus (eX.B)\a has no actions (since Res+ yields none) ;
neither has NIL, which settles the case B = o,
For (B #a), by Res > the only actions of (©X%.B)\8 are

%\ SBBT/ANE = (B\B) /R

and these are exactly the actions of oX.(B\B).
The proof for guards ov and T is similar.

(iii) Camn = : BJ|C = X....;. Z... + z ...+Z... .
(We use X to abbreviate the right-hand side.)
Let B|C ¥p . here are several cases.
(@ B B" , and D=B"IC (by Can>(1) ).
Then B has a sumand g.B' for which g.B'ﬂaB"
(by Sum +). This action must be an instance of Act» ,
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from which we can also find that g.(8'|C)-X%B"|C
(considering the three types of guard).
Hence also XS B"|c =D .

® c*%cr , and D = BJC" (by Can~(2))
The arguvent that x*p is similar.
(c) B 28 pr R c® e and wv=1,D= B"|C"
(by Cam>(3) ; there is 3 similar case with o,d exchanged)
Then by Sum > and Act > , B has a summand ©oX.B'
and B" = B'(3/%} , while C has a sumand ou.C' .
Hence, since X has a summand . (B*{u/xt|c'), we have

X—T>B"|C;' =D, as required .
We have now shown by (a),(b) & (c) that for ail u,v and D
Blc X% p = x%p

and the reverse implication can be argued similarly.
Exercise 5.1 Prove same more of the equivalences claimed;
e.g. Sun=(1), Res =(2), Rel=(2) and Con=(1) . They are all as

easy as Sum =(2) .

5.7 Congruence of behaviour programs

We now propose to extend or widen our direct equivalence relation to a
congruence relation. Apart from the wish to get a congruence relation
{so that equivalence is preserved by substitution of equivalent programs)
there is another motivation; ' ' requires that the results of actions of
equivalent programs should be identical, and it is reasonable to ask only
that the results should be equivalent again.

We therefore define the relation '~ ' over programs, which we call
strong equivalence (we define it anmalogously to the observation equiv-
alence of §3.3, but it is stronger because we do not allow arbitrary
t-actions to interleave the dbservable actions). We define it in terms of
a decreasing sequence ';0' Npr e T orees of equivalence relations:




78

Definition B~ oC is always true;

B ~ C iff forall u, vV

k+1 .
(i) if BE M B' then for save C' y cthe' and B ~ c',

(ii) if cX% ¢'  then for sae B’ ,Bl‘——»B' and B' ~k Cc'

~

B~C iff Vkz0.B~ C (iie. N=Q~k) .

We leave out the simple proofs that each ~k is an equivalence
relation, and that B k1 C implies B~ C (i.e. the sequence of

equivalences is decreasing) .

Exercise 5.2 Show that B = C implies B K C for each k , and
hence implies B ~C .

Theorem 5.4 ~ is a congruence relation.

More precisely, B1~ B2 implies
B1:C~B2+C, C+B1~ C+B2
o V.B "‘EV.B:Z ’ T.B1~ 1.B
B1|C~B2|C , c|}31~c|132
Bi\aNBz\u ' B1[8]~B2[SJ

and Bl{v/i}NBQ{?i/i} (for all v)  implies
oLx.B1~oLx.B2

Proof We give the proof only for camposition. We prove by induction
on k that

B, ~ B, implies B, IC ~ B2|C

For k =0 it is trivial. Now assume 81 Kt 2 o
Iet 13.1|c-‘£’>p1 . Wewant D, such that
, o
B,|C->D, ~ D,

There are three cases:
(a) B B' , and D1 = B”C (by Com ~ (1))
[ ] v
Then B2 B2 kB1 . for same B2 y
whence BQIC——+B5|C by Com (1)

~ D (= Bi|C) by inductive hypothesis .

by c¥ser and D, =Bc' (by Cam>(2)
Then B |c B,|C' by Com~(2)
L. 1
But B1 B, (smce B B,), hence B1]C kB2|C

"k 1 "kh
by inductive hypothesis.
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o~ et ]
(© B 25B; cXc' and wv =1, D = BjlC' (by Como(3)

Then Bz'—)‘u»B' NkBi , for some Bé y
whence B2|C—T->B§|C' by Com ~»(3)

k

By symmetry, of course, if B2|Cl‘l’>D2 then we find D1 such that

uv
B |C—»D ~ D .
1l 1 k2 &

~ D1 by inductive hypothesis .

implies ocv.B1 ~k+10£V.B2 H
and also that

Exercise 5.3 (i) Prove that By ~1 B2
this shows that B, ~B, implies av.B, ~ 6.8, ,

guarding increases the index of ~K by ane.

(ii) Prove the last part of the Theorem, involving the
positive label guard.

We end this section by giving same useful properties of ~ , in ]
the form of eguational laws. Note that Theorem 5.3 already gives many
of its properties, since = is contained in ~ . Since we run the
risk of bewildering the reader with a confused mass of properties, let
us emphasize same structure.

In Theorem 5.3, Sum = states that + and NIL form a cammutative
semigroup with absorption, and Res =, Rel =, Cam = each describe how
one of the static behaviour operations \a, [S] , | interacts with the
dynamic operations +, uv and NIL. 1In the following theorem Com~ states
that | and NIL form a commutative semigroup, while Res ~ and Rel ~ state
how the static operations interact with each other. The laws of Theorem
5.5 are only concerned with the static operations- they are essentially
the Laws of Flow in [MM, Mil 2] .

Theorem 5.5 (Strong congruences) The following strong congruences hold:

Com ~ (D) B1|B2~B2|B1 (2) 31|(132|133)~ (8,B,) |B,
(3) B|NIL~B

Res ~ (1) B\a~B (B:L, o ¢ names(L))
(2) B\a\g8~B\f\a
(3 (B1|B2)\a~Bi\a|B2\u (B, L, /B,:L,, o ¢ names (@0 L))
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Rel ~ (1) BLI]~B (I:L+L is the identity relabelling)
(2) B[S]~B[{S'] (B:L, and SIL = S8'}.)
(3) B[SI[S']~B[S'.S]
(4) BISI\B ~ B\a[S] (B = name(S(a)))
(5) (B1[BQ)[S] ~ B, (s] |32[s]

Proof We give the proof of Com~(2). It is the hardest ~ but all the
proofs are routine inductions.
We prove VBBB_ . Bll(BQ! B,) ~ (8,/B,)|B, by induction on k.
For k =0 it's trivial.
Now for k+1, let B1}(B2|B3)£’>D ; we require D' such that

(B18,) IB; 5D ~ D .

There are several cases:
(@) B-+SBY , and D =B} (BB, by Caur(l).
v .
Then (911}32”133 L4 (311132)|133 by Cams(1) twice
K D by induction.
® B,lB,t%cC, and D = B,[C by Cam(2).
Subcases

(1) B, % By , and C=B}|B, by Cam(l) ; i.e.D=B|®B) .
Then BIB —-»BliB' by Canx(2) ,
so (B IB )]B < (8,|B)) |B, by Canx(D) ,
kay induction.
(ii) B, ——+B' , and C ~B2|B' by Com>(2); similar.
(111)B2_)‘P.B2,B Mg ,C*B'IB' and pv =1;
so D=B I(B [BY) by Coms(3).
Then B,|B, 3B, B} byCar»(z).
so (B1]B2),B3'—*(131'52)|B§ by Cam»(3),
~kay induction.
(@ Bl~——>B' » B,|B, e »D=B/|C and wv=r by Com(3).

3

Subcases
Au

(i) B, —»Bz ,and C = B2|B3 by Com>(1) ; i.e. D = B} |(B'2]B3)

Then 131|B2 BllBé by Cans(3) ,

T
so (B,[B,)|B,-5 (B]|B}) [B, by Cam>(1),
% D by induction.

(11) B, —)‘BB' , and C = B2|B:'3 by Com>(2) : similar.
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Thus we have found the required D' "'kD in each case;
Similarly given (8 |B)|BX%D , we find D' such that
v o,
B,|(BB) — D' ~D .
This completes the inductive step, showing

B, 1(ByIBg) ~yyy (ByIBy)IB, ®

Exercise 5.4 Prove Com~(3) and Res~(3) . For the second, you
need to appeal to Proposition 5.1.

We now state and prove a theorem which we need later. It depends
critically on the assumption that all behaviour identifiers are guardedly
well defined (§5.4).

Theorem 5.6 Strong congruence 'satisfies its definition' in the
following sense:

B ~C iff for all wu,v
(i) if B W Bt then for same C' ., C W et and B'~C' ’
(ii) if c¥ ¢! then for same B', B W Rt and B'~C'.

Proof (<€) B'~C' inplies B' ~kC' for any k ; hence fram (i)

and (ii) we deduce B ~k+1C for all k , by definition, whence B~C .

(=) Since B ~+1C for all k , we have by definition that if
B ¥ B' then, for each k, 3Ck.CLV> C & B'~ka . But fram our
assumption that all behaviour identifiers are guardedly well-defined
it follows that {C';c ¥¥ C'} is finite (we cmit the details of this

argument). Hence for same C' ,
c®c' and B' ~C' for infinitely many k

and this implies B' Nkc' for all k , since the relations ~ are
decreasing in k , hence B'~C' .,

Thus (i) is proved, and (ii) is similar. H

5.8 Congruence of Behaviour expressions and the Expansion Theorem

Having established definitions and properties of direct equivalence

and congruence of programs — behaviour expressions without free variables -

we are now in a position to 1lift the results to arbitrary behaviour expressicné.
All that is needed is to define = and ~ over expressions as follows:



82

Definition

let ¥ be the free variables occurring in B1 or 32 or both.
Then :

B, =B, iff, for all v, B, (¥/%} = B, {¥/%}

B, ~ B, iff, for all ¥, 51{6/32%132{5/;2}

Now we clearly want to extend the results of Theorems 5.3, 5.5 to
arbitrary expressions; for example, we would like to apply Ccam~(3)
of Theorem 5.5 to replace

o(x+1). NIL|NIL, by o(x+1).NIL

anywhere in any expression, but the law only applies at present to programs,
and the expressions shown have a free variable x.

We state without proof the desired generalisation.

Theorem 5.7 The relation ~ is a congruence over behaviour expressions.
Moreover, the results of Thebrems 5.3, 5.5 hold over arbitrary exnressions,
with the following adjustments:

(i) In Com= and Ide= of Theorem 5.3, replace Vv (a value tuple)
everywhere by E (a tuple of value expressions).
(i1) Add in Com= the condition that, in the first (resp.second) sum
on the right-hand side, no free variable of C(resp. B) is bound by g.
g
We now have enough to prove the Expansion Theorem, which we
used in Chapter 4.

Theorem 5.8 (The Expansion Theorem).

let B = (Bil...le)\A, where each B; is a sum of guards. Then
B~ J{g.((B,]...|B] ...|B)\R); g.B]
a summand of Bi’ name (g) { A}
+ X{T.((131|...]Bi{ﬁ/;;}l...|BJ!|...|Bm)\A);
a)Nc.B]!_ a sumand of B, EE.B:'i a summand of
B. , i=%j
5 i=3j}
provided that in the first term no free varfable in Bk(k;k i) is
bound by g . )
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Proof. We first show, by induction on m, that

B

1[...|Bm~ z{g.(Bll...|Bi|...|Bm) i g.B] a

sumiand of Bi , 1<ism}
IR ] .
+Z{r.(Bll...IBi{E/iH...|Bj|...|Bm) ;
a}"{.B]!_ a summand of B, » aﬁ.Bé a
summand of Bj , i,3¢{,...,m}, 123}
under the proviso of the Theorem. Note first that for m =1 the
second term is vacuous and the result follows simply by reflexivity

of ~. Now assure the property for m-1 , with right-hand side C.
Then we have (by congruence)

B ~C|B

1["'IBm-1‘Bm m

and we may apply Com: , generalised as in Theorem 5.7, since each of

C and Bm is a sum of guards - and moreover the side-condition for

Cam = (stated as (ii) in Theorem 5.7) follows from the proviso of the

present theorem. The property for m then follows by routine, though

slightly tedious, manipulations; of course we rely strongly on Com-~ (2),
Finally, the theorem follows easily by repeated use of Res =(3) and

Sum =(3) . ®

Exercise 5.5 Complete the details of the inductive step in the proof,
and see exactly where the proviso of the theorem is necessary.

In sumary : we now have a powerful set of laws for transforming
programs and behaviour expressions while preserving their derivation pattern.
(These laws are enough to prove the Expansion Theorem, Theorem 5.8, for
exarple.)

We have prepared the way for introducing CTs, an algebra which satisfies
these laws and so may be regarded as a model of CCS which is faithful to its
derivation patterns. '

But we should mention that cbservation equivalence (%) (genleralised
from §3.3 to admit value-passing) is a wider relation that our ~, and

satisfies still more equational laws.



CHAPTER 6

Communication Trees (CIs) as a model of CCS +

6.1 CTs and the Dynamic Operations

Let us review the definition of STs. An ST of sort IcA is
a rooted, finitely branching, unordered tree whose arcs are labelled
by menbers of ILu{t} .

Another way of saying this is that an ST of sort L is a finite
collection (multiset) of pairs of form <u,t> (pelu{t}) where each
t is again an ST of sort L.

(We allow this definition to include the possibility of infinite
paths in an ST, though to state this formally requires some mathematical

sophistication which we do not want to be bothered with ~ the idea of
infinite paths is clear enough.)

Here is a typical ST:

Now in the language of Chapter 5, positive labels are allowed to
bind variables, and negative ones are allowed to qualify values (or
value expressions). Thus, what 'happens next' after passing a positive
label (= input guard) depends upon the value input; less critically, a
value is output while passing a negative label (= output guard). Supposing
that {VO,Vl,...} are the values of type appropriate to o, and v is a
value of type appropriate to B8, then a typical CT will look like this:

1 This chapter is not essential to the technical develomment, and can be
omitted. Its purpose is to assist understanding by giving the natural
generalisation of STs to admit value-passing.
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indicating (i) that on passing guard «, the input vy selects ti s
to 'happen next’. '
(ii) that v is output on passing B-
We expect this CT to be the interpretation of a behaviour program

ax.B + gv.B' + 1.B"

where (i) the programs B{vi/x} stand for CIs t,;
(ii) the programs B' and B" stand for t' and t".

Notice that the variable x appears nowhere in the CT; its purpose
in the program is to show how B depends upon the value input, and this
dependence is explicit in the CT; each ti depends, literally, from
the value v,. (Of course, we can never draw a whole CT, in general -

i
even to finite depth - because of infinite value damains). -

More formally, then:

pDefinition A CT of sort L is a finite collection (multiset) of pairs,
each of fomm
<a,f> (ael), vhere £ is a family of CTs of sort L indexed
by the value set appropriate to o
or <§,<V,t>> (Bel), where v is a value appropriate to E and t
isa CT of sort L
or «<t,t> where t is a CT of sort L.

Iet us denote by CI‘L the CI's of sort L, and by V, the set’of
values appropriate for a. We have, as with STs, an algebra of CTs as

follows:

NIL (nullary operation)

NIL is the CT [}

NIL ¢ CT, .
< g

+ {binary operation)

A+ A is the CT

+ eC'I‘LXCI'M—>-C'I'LUM.
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a (a "Vu-a.ty" operation)

o
Yy v,
- 2. . N
.
NAWAS

o takes a set of members of CT indexed by Va’ vhich is just a function

o

L
£: Vu + CTL, and gives a member of CTLu{u} ; so
a e(Va + CI‘L) + CTLU{a}'
This is why we called o a Vu-ary operation.
o (a family of unary operations)
av, , for each nga, is the CT v ;
For each v, av e C].‘L-rCTLU{E}; a eva—r (crL+Crm{;}).

t (unary operation)

'r< > is the CT !

TE CI‘L > C‘I‘L.
Clearly there is a very close relation between CCS programs (involving

only the dynamic operations) and e?;pressions for CTs in this algebra.
This is no accident!

Corresponding to programs NIL, av.B, 1.B, B+ B' we have CTs
NIL, avt, tt, t+t'. Corresponding to the program ox.B we have a
CT of; 1if we wrote the CT family £ as v + t(v) then we would
express of as

alv » t{¥))

Of course there are many CTs which we cannot write down as expressions,
because arbitrary Va—indexed families of CTs cannot be written down
finitely.
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But we can, using these notations, begin to define the interpreta-
tion of CCS in the algebra of CIs. We shall write the CT which B stands

for as [BJ- Then we have

Definition )
[NII] = NIL
fox.B 1 =o(ve[B{v/x}])
{av.B ] =av[B]
Iv-Bl = t[B]
B + B'] = [B} + [B'}

6.2 CTs and the static operations

We now show that the static operations |, \a, [S8] can be defined
recursively over CTs. Recall that a CT is, formally, a multiset of
elements like <o ,5, <E,<v,1>> or <t,t> ; we shall call such
elements branches of the CT. We shall content ourselves with a rather
informal definition of | , \a, [S] using pictures of branches, rather
than defining them formally in terms of multisets.

| (binary opevation)

|eCI' x CT > CTLuM
let teCI‘ ' ueCT Then t|u has the follow:.ng branches:

Q

(i) For each branch »  of t, a branch
1‘?’

v,

ol

’ ;E
(ii) For each branch of t, a branch v
A

~

~

(iii) For each branch of t, a branch
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and similarly for the branches of u.
(iv) For each pair of branches

v v,
” > of t, and

£ £

a branch

and similarly for branches <;,<vj ,st'>> of t and <o,V u> of u.
(Thus an output branch of u selects a member of t's complementary
input branch. You should campare this definition with composition of

STs in §2.3.)

\e__{unary operation)

\aeCI‘L > CTL—{a,;}

We could give the recursive definition, but it's enough to say that t\a
is gained by pruning away all o— and a-branches occurring anywhere
in t.

[S] (uwary operation)

[S]sCTL > CTM' where S:L » M is a relabelling.
Again it's enough to say that t{S] is gained by replacing A by Si
everywhere in t (Ael).

Exercise 6.1 Give the recursive defiritions of \a, [S] in the same

style as we defined |.

Now of course, we can continue our definition of the interpretation
of behaviour programs, as follows:

Definition [B[B'] = [B}|[B'}]
[B\a] = [Bl\a
IBLS]} = [BILS]
[if true then B else B'] = [B]
[if false then B else B'] = [B']
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Since our definitions of [} for programs lock very trivial, as they !
should, we must remind ocurselves of the purpose. We are aiming to show
that when we are working with strong equivalence of programs (the ocon—
gruence relation ~ defined in §5.7), and using its properties as -
listed in theorems 5.3, 5.5 (but omitting Sum =(4), the absorption law),
then we are justified in thinking of the programs as the CTs that they
denote; CTs are meant principally to be a helpful mental picture, or
visual aid.

The rest of this chapter gives the appropriate justification. But
first we must deal with recursively defined CTs.

6.3 CTs defined by recursion

Assume as in §5.4 that our behaviour identifiers b are defined by
clauses

b(xl,...,xn(b)) L= Bbr

one for each b. Here it will be convenient to suppose that bo, b1""
are the set of identifiers, with arities Dor Dyyeces and write Bi for
Bb , So that the clauses are
i

bi(xl,...,xni) = B, .
Now we intend to show that these clauses define, for each i and vector
v = VyreesrVy of values appropriate for bi' a wnique CT as the

i

interp retation of

bi(v) . ‘
what are these CTs to be? We will call them l[bi(x”r)]. When we know
them, we also know the meaning of Bi{'\"r/fé} for each i and '{'7; this
is so because, by our definitions [] so far, each ﬁBi{;r/;c}] can be
rewritten as a CT expression in temms of {[bj (G)]l for various j and
U. An example will make this clear. Consider the defining clause

b(x) & if x=0 then Bx.NIL else ay.b(y)
and call the right-hand side B. Then

(Bfo/x}] = [BO.NIL} = g0o(NIL) (a CT expression)
while for any v # 0

[B{v/x}] = [ay.b(¥}] = a(u »[bF){w¥}]) =alu »[b] ,
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Now we wish our CTs bi(;), for each i and ¥, tobe solutions
of the equations over CTs
Ib; (M1 = 1B, {v/X1)
(there are very many such equations, one for each pair i, v.)
Luckily, we can prove the following:

Proposition 6.1 If the behaviour identifiers bi are guardedly well—-defined
(see §5.4) then the equations

tb; (01 = 18, (V/x})
define a unique CT Ebi(;)] for each pair (i,v).

Proof Qmitted. X
We can see vhy this is so, for our example above, as follows.

Clearly [b(0)} = BO(NIL) = IE is uniquely defined.
0

For any v # 0 we have

bl = guribwl =

o
0 2 2

so that by using the two equations repeatedly the CT [b(v)} for any
v can be developed unanbiguously to any desired depth.

On the other hand, consider again the forbidden example in §5.4
b(x) €= ox.NIL + b(x+1).
For any v (a non-negative integer) we would have

[b(v)] = av(NIL) + [b(v+1)]

v Ib(v+1) ]
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and if we develop this, we cbtain the infinitely branching (forbi.ddeﬁ.')
CT for b(0):

b(0)] =

Moreover, even if we allowed infinite branching in CTs this would not be

a unique solution.

Exercise 6.2 Find another solution. (Hint: consider, if you know
the theory of regular expressions, why the equation R =S8R+ T ~
for given sets of strings S and T - does not have a unique
solution for R as a set of strings unless e¢S, where ¢ is the

null string.)

To sum up; we complete our interpretation of behaviour programs
as CTs by defining unanbiguously for each b

Definition (b(¥) ] = (B, (V/X}]

Remark There is a more general interpretation than CI's which makes sense
of unguarded recursions, but we decided not to use it here.

6.4 Atomic actions and derivations of CTs

If we wish to think of behaviour programs as the CI's which they
stand for, then - for one thing — we must be able to understand the
action relations ~+%s over CTs in such a way that they harmonize

with the corresponding relations over programs.

We therefore start with an independent defintion of the relations
W, over CTs. (We oould use a different symbol from — for these
relations, but it will in fact always be clear whether we are talking
about atamic actions of CTs or of programs.)
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Definition Let t be a CT, i.e. a multiset of pairs (as defined irf

§6.1). Then t has the atomic actions

1 2% f(v) for each member <q,f> of t and each v of
type appropriate for a; i

(i) 8% ' for each member <g,<v,t's> Of t;

(1ii) t > &' for each member <1,t's of ¢t.

This states, for every t, exactly which pairs <t,t'> are in the
relation Y. for every u and v.

Exercise 6.3 List the atomic actions of the typical CT diagrammed in
§6.1.

Exercise 6.4 Prove that t +t, MV, ¢ ifF either ti—}iz» t’
or tz—% t'.

Exercise 6.4 gives a hint of the hammony we expect between the
action relations Y- over CI's and over programs. For if we recall
the rules Suw> of §5.3, we can rephrase them as follows:

B, +B2—£>B' iff either Bl—y-LB' or Bz—pl>B'
(the '"iff' being justified by the fact that Sums> is the only rule by

which actions of B 1 + B2 can be inferred).

Similarly, the CT of, which is the multiset whose only menber is
<a,f>, has only the actions

of v, f(v), for each v, )
which we can compare with the fact, fraom Act+(1) in §5.3, that the
program ox.B has only the actions

ax.B —ag—>B{v/x}, for each v.
Exercise 6.5 Using the definition of | over CTs in §6.2, show that
the CT t 1|t2 has exactly the actions
@ g e, X tljt, when £l
. uv < ULy,
() ¢ ¢, t |t when ¢t £ -

[k S I AV s '
(i) ¢, tile;, when t; t] and £, ——t).

Campare Cans in §5.3.
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Surely then the atomic actions of B and its CT [B] are closely
related. We state the relation in a theorem:

Theorem 6.2
1 1f BB then BI- >l
2) 1f B¢, then for sam B, B—>B' and [B']=t'.

Proof Mainly by induction on the structure of B; but particular care
is needed when B =Db{¥), and the assumption that the b's are guardedly
well defined is important. R

In other words, the atomic actions of [B] are exactly [B] AN B'3
where B —u-v—>B' is an atamic action of B; this means that in con-
sidering atomic actions, it makes no difference whether we think of
programs or of the CTs that they stand for.

The next step is to show that this holds too in considering strong
equivalence.

6.5 Strong equivalence of CTs

We prooeed in the same style; that is, we define strong equivalence
(~) over CTs independently, and then show how it hamonises with strong
equivalence of programs. Our definition is entirely analogous to that of
~ for programs (55.8); we use a decreasing sequence Nor Tgrerer™ gree
of equivalences:

Definition t~ou is always true;
t~k+1u iff for all u,v
(1) if t s’ then for some v, uf¥% y' ang ¢ ~ku';
(1) if u—yu' then for same t', t 2% ¢! and ¢ ~at
t~u iff Vk 20.t~ku.
Although we don't need it at present, we may as well state the analogue

of Theorem 5.4.

Theorem 6.3 ~ 1is a congruence relation in the algebra of CTs. More
precisely, 1:1~t2 implies
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t1 +u~t2 +u‘, u + t1~u+ 1:2
avit) ~avity), i) ~1(t,)
t1Iu~tZIu, u|t1~u|t2
ti\a"'tz\a, tl[S]~t2[S]

and £, M~ L, (v (for all v) implies af1~af2.

Proof Analogous to Theorem 5.4, and cmitted. A"

What we do need, to complete our justification of thinking of
programs as CTs, is the following:

Theorem 6.4 B1~82 iff [81]'»[132}.

Proof We must prove separately, by induction on k, that
(1) B1~kB2 implies lIB1]~k[B2];
2) [[B1]~kf[32] implies B1~k82.

We do only (1), leaving (2) as an exercise. The case k=0 is trivial.

Exercise 6.6 Vhy?

Now assume (1) at k, and assune li’v1 Kt 2, and prove nBill~kH[B2E.
Suppose EB ] —— ti Then by Theorem 6.2 (2)
T 1 1 L] -_— 1]
Bl—l‘—>]31 for some B}, with |IB1] =t].
So by assunption
v L] | I
B B for some B2, with B1 k 0t
and by Theorem 6.2(1)
IIB 1 KB 1, with t' lIBiIlNklIBéII by inductive hypothesis.
This verifies the first clause in “k +1's definition; the second clause
follows by symmetry, so the inductive step for (1) is camplete. iy

Exercise 6.7 Prove (2) by induction on k. You will again need both
parts of Theorem 6.2; if you think you need only one part, then your
preoof is likely to be wrong.
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6.6 Equality in the CT model

Can we have B1~B2 but [[3111 + IIBQB? That is, if two programs are
strongly equivalent, are their CTs perhaps always the same?

No, because for example
T.NIL + 1.NIL ~ 1.NIL;
but the two CTs are T AT and TI respectively.

But then perhaps the only difference between the CTs [{Blll and [BQ]],
when B1~B2, is due to the fact that t + £t = t is false for CTs, because
we allow the presence of identical branches.

In fact, we first thought that if we adjusted our definition of CTs
to be in terms of sets rather than multisets, then all our results so far

would hold, and also we would have

B, ~B, iff EB11=HB2] (?)

However, Brian Maych showed this to be false, with the following simple
counter-example. Suppose x 1is a Boolean variable, and consider the two
programs

B1 = otx.C1 + aX-C2

B, = ox (if x then C, else C2)+ oX. (if x' then C, else C)

where C1 and C2 do not contain x. Clearly we have only the following
four actions for B :

Bl—g& Ci y  Ve{true,false} and ie{1,2}

and B, has exactly the same four actions. So B1~BQ. But IIB1]] and

2
I[B2] are different CTs:

o
false true false

in which ti = RCi], ie{1,2}. So in general IIB1B ES KB2I}, though of course
ﬂBllN IIB21| by Theorem 6.4.

We chose to define CI's as multisets rather than sets of branches,
because it seemed that multisets are a more concrete intuitive model;
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after all, to check whether two branches are identical requires an.infinite
amount of work! But it is very much a matter of taste.

Even in the present model, many equalities hold. In fact, if we allow
ourselves to drop the semantic brackets [], and take a behaviour program
to denote a CT without this extra formality, then we state the following:

Theorem 6.5 All the congruences of Theorems 5.3, 5.5 are identities in
the CT model, except Sum=(4) (absorption).

Proof Omitted. It is a matter of proving that the two CTs in quéstion -

for example (B, [B)) \a and (B,\a) l(B2\u) (Res~ (3) in Theorem 5.5). -

are identical to depth k, for arbitraxry k (using induction on k).

In fact, the identities of Theorem 5.3 can be proved without any induction.
i1

Exercise 6.8 Prove some of the identities of Theorem 5.3. Also prove
Com~ (1) of Theorem 5.5 - B,IB, = B,IB, - by induction on depth.
That is, assume that C,IC, and C,lC, are identical to depth k
for all C,,C,, then show that the branches of B:lle' B2|B1 are
in 1-1 correspondence, with correspanding branches identical to
depth k+1,

6.7 Summary
In this chapter we have

(i) Constructed CI's as an intuitive model of CCS;

(ii) Shown that, in considering atomic actions and strong equivalence of
programs, we are justified in considering these notions as they apply
to the denoted Cts;

(iii) Shown that many useful program equivalence laws are actually identities
for CTs.

We have not studied the wider relation of dbservation-equivalence over

programs. But it turns out that, for any equivalence relation which is

defined in temms of v, and/or ~, we can think of this also as as
equivalence relation over CTs.
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Exercise 6.9 After reading §7.1 and §7.2 on cbservation equivalence
(~), define the analogous relation = over CTs. Then investigate
whether the analogue of Theorem 6.4 .

B ~B, iff [Blﬂw iIBJ

is true, as suggested in §5.1.

One further point should be mentioned. 'The syntax of CCS is such
that only a small subclass of CTs are expressible as programs. In parti-
cular, a CT of form {<a,f>} can only be expressed by a program u}'\'{.B'
for which B, oonsidered as a function of its free variables %, expresses
the family f schematically. Now there are effectively indexed CT-families
f which cannot be represented by CCS expressions; consider for exarple
the family £ = ﬁi ; ieN}, and let o bind an integer variable, so
that {<a,f>} is the CT

<1
*~——q
*-———y

=<1

[y
—en

<1

N

A 4

whose (infinite) sort is {“’;0';1';2""}' To express it in CCS we may

wish to allow labels to be parametically dependent upon values, and write
ax.?x.NIL. In more complex cases ;x could also qualify a value expression,
or be replaced by a positive parametric label binding a variable. Such
extensions of CCS may be of real practical value. If we wish to consider
them, then the theory of CTs increases in importance since it does not
comiit us to any particular expressible subclass of CTs.



CHAPTER 7 )

Observation equivalence and its properties

7.1 Review

In Chapter 6 we studied CTs as a model of CCS; this should have
given insight into the laws of strong congruence (~) stated in Theorewms
5.3 and 5.5, since CTs satisfy all these laws except the absorption law
B + B = B, interpreted as identities. In spite of this slight discrepancy,
it is still useful to think of programs 'as' CIs.

In 53.3 we defined a notion of Cbservation Equivalence (=) for STs;
in our Data Flow example (§4.3) we anticipated using it in full CCS but
gave no definition. We saw that its purpose was to allow uncbservable
actions (T) to be absorbed into experiments. '

Recall also the derivations of §4.4. We abbreviated

m
B ==>B' (m20) by B == B'

m n
B %B' (m’nz ()) by B L>B'

More generally, we now abbreviate

70 ulvl.'rm.l el V. %
B =——__~:B'

(k=0, Ty pees My > 0)

V.

HeVyr oo My

by B B'’

which includes the above cases (they correspond to k =0, k =1). It also
incllttlldes the possibility u, = 1T, 80 that for example rnB —T—-*>B'. means
B =E=>B' for same m>0, while B ===>B' means B ===B' for same
mz0; but usually we shall have use A.

For each s = AV .....hVp eh x V%, 5 is the s-experiment
relation, and each instance B =8=B' is called a s~experiment. We now
define Obsexrvation Equivalence = in temms of s-experiments.

7.2 Observation equivalence in CCS

Analogous to §3.3, = is defined for programs by -a@ decreasing sequence
of equivalences:



Definition B Ry C is always true; 1

B S C iff for all se(p x V)*
(i) if B =£B' then for some c', C =-¢' and B N C';
(ii) if C =£-.¢' then for same B', B -—S————>B' and B' », C';
BxC iff Vk20. By C.

k

Remarks

(1) There is a question as to whether we need to consider all s-experiments
in this definition, or if it is enough to consider only those of length
1 - i.e. we might replace se{d x V) by seA x V in the definition.
The relation ~ thus obtained is different, but it turns out that the
congruence (§7.3) which it induces is the same (assuming only that
CCs includes an egquality predicate over values), though we shall not
prove it here. Our present definition, using (AV)* , has somewhat
nicer properties.

(2) Our definition has a property which must be pointed out. It allows
the program (CTs)

T = and NIL = @

Joo
to be equivalent! (¢ can be defined by bé&= t.b.)

iExercise 7.1 Prove 1" Ry NIL by induction on k.

|

§ Notice that the only experiment on P is == (corresponding
m

to ¥=F=3® for any m), and NIL's only experiment is NIL =5= NIL.

L

Thus, whenever we have proved BsC (e.g. B may be a program and C
its specification) we cannot deduce that B has no infinite unseen
action, even if C has none. In one sense we can argue for our def-
inition, since infinite unseen action is - by our rules - unobserv-
able! But the problem is deeper; it is related to so-called
fairness, which we discuss briefly in §11.3, In any case, there is
a more refined notion of = which respects the presence of infinite
unseen action, with properties close to those we mention for the

present one.
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(3) Disregarding the question of which equivalence is correct, if indeed
there is a single 'correct' one, the finer ecquivalence (under a
slight further refinement)has interesting properties. Hemnessy and
Plotkin [HP 2] have recently found that it can be axicmatized, in
a sense which we cannot explain here. Much more needs to be known
before we can say which equivalence yields better proof methods;
at least we can say that, if an equivalence can be proved under the
refined definition, then it holds also under ours.

We now turn to the properties of «. There are many, but three are
enough to give a feeling for it, and to allow you to read the first case
study in Chapter 8, if you wish, before proceeding to §7.3.

The main thing which distinguishes x fram ~ is the following:

Proposition 7.1 B =1.B

Proof We show B 4 T.B by induction on k. k=0 is trivial, so we
assume for k and prove for kii:
(i) et B=S5B'. Then also 7.B=25B', andwe know B'w~ B' (each
Ry is an equivalence relation!)
(ii) Iet T.B ==C'. Then
either (a) s=e, and C' is 1.B; but then also B =55 B, and by

induction B ka.B

or (b) ©.B->B .—E»c', i.e. B=35¢ also, and again
(el
(o “’kC
This campletes the inductive step, yielding sz 4" .B. B

This proposition should make you immediately suspicious of =,
because we can show that it cannot be a congruence. In particular
BrC does not imply B + Dw~C + D;
e.g. take B as NIL, C as <t.NIL, D as o.NIL -
then By€ by Prop. 7.1, but B + D 4;2 C +D.

Exercise 7.2 Show that NIL + o.NIL JFQT.NIL + a.NIL, by observing that
RHS =& NIL, but the only e—-experiment on IHS yields a result which
is 4»,1 NIL,
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Even so, Theorem 7.3 below tells us that ~ is near enough a con+
gruence for many purposes. First we need to see its relation with C o~

Theorem 7.2 B~C implies Bw~C,

Proof We show that B~C implies szc by induction on k. At k=0
it is trivial; assume it at k (for all B and C), and prove it
at k+1. Assune B~C:
s WYy Yn¥n
(i) et B=>Bn, say B——>B~+> ... —>B, where same of
the uivi may be 1, while the remainder constitute s. Then by
Theorem 5.6 used repeatedly, there exist C1' ey Cn with

WV LV
c 1, C, * oee —>C, iee. ctsc,

with Bi'vCi for all isn.
In particular Bn~Cn, so by induction ankcn, and we have found
the desired Cn'

(ii) et C=»C ; then similarly we find B with B =5 xC. 8

The importance of this theorem is that all laws of Theorems 5.3, 5.5 hold

also for =.

Theorem 7.3 Observation equivalence is a congruence for all behaviour

operations except +. More precisely:

(1) B~ C implies av.Bw

X a.C, T.Bm,T.C,

K
B|Dw,C|D,

[y

B\aNkC\a, B[S]NkC[S]
and Blv/x}~, Clwx} for all v implies aX.BwoX.C.
(2) Hence the same holds with the indices k removed.
Proof Iet us just take the most interesting case:
Bz, C implies B|D~,C|D,
which we prove by induction on k. (This property is not true for the

different observation equivalence suggested in Remark (1) above.) Assume

at k, for all B, C, D, and assume Bmk_i_lC:
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i) Iet B|D=2sE; then E must be B'|D', with B=1B', D=0
for some q,r (containing camplementary members which 'merge’ to
fom ==» ina way which we need not detail). Then for some C',
c=L-c' and B'~,C' by assumption. :

But then C|D ===C'|D', and by the inductive hypothesis

B'[D'% ,C'[D', i.e. EnC' [p*.

(ii) Iet C|D === E, then similarly we find B'[D' such that

B|D éB'ln'zk E. B

The essence of Proposition 7.1 and Theorems 7.2, 7.3 is that we
can use all our laws, and cancel t's too, in proving observation
equivalence - provided cnly that we infer nothing about the result of
substituting C for B under +, when we only know BwsC.

The next section tells us what such inferences can be made.

Exercise 7.3 Prove that B~ ,C implies Ev.Bs:skav.C by induction
on k. Why is induction necessary? (Consider e-experiments).

As we did for ~, we extend = to expressions by:
Definition Iet X be the free variables in B or C or both. Then
BaC iff for all v B{v/x}~C{v/x}.
Then we have

Theorem 7.4 Proposition 7.1 and Theorems 7.2, 7.3 hold also for expres-—

sions.
Proof Routine. R

From now on, we deal with expressions.
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7.3 Observation Congruence

We must now face the fact that ~ 1is not a congruence (see Exercise
7.2). But we would like a congruence relation, because we would like to
know that if B and C are equivalent, then in whatever context we
replace B by C the result of the replacement will be equivalent to
the original - which is only true for an equivalence relation which is a
congruence. We have one congruence - strong congruence (~) = but it is
too strong; for example «.t.NIL ¥ o.NIL.

Can we find a congruence relation which is weaker than ~ (so that
all our laws, Theorems 5.3 and 5.5 will hold for it), and has some of the
properties of x (so that for example a.t.NIL and o.NIL will be congruent)?
Iet us draw the order relation (part of the lattice of eguivalence relations)
among our existing equivalence relations with stronger relations to the left,
and square boxes representing congruences:

Equivalences over behaviour programs:

Identity - Universal
Relation _)®——) . . Relation

We want to £ill in "?". Tt must be stronger than = because we do want

congruent programs to be dbservation eguivalent. We get what we want by

the following: '

Definition B ~ C (Observation congruence) iff for every expression
context CL J, CIBI=CICI.

Theorem 7.5

(1) <€ is a congruence relation;

(2) If 6 is a congruence and B6C implies Bw~C, then BoC implies
B §C.

Proof Qmitted; it is cawpletely standard, and has nothing to do with

particular properties of the equivalence =. B
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Our Theorem says that NC is the weakest congruence stronger than

(smaller than) .

Corollary 7.6 B~ C implies B & C implies BwnC . )
Proof Tmmediate. B

It is one thing to define a congruence, another to know its properties.
We first find out more about the relation of ~° to m; in the next

section we find some laws satisfied by ~C.

We saw earlier that sum contexts were critical for ~, because
BxC does not imply B + D aC + D. This leads us to explore a new egui-

. +
valence relation «~ :

Definition B# C iff VD. B+DmC+D .
(equivalence in all sum contexts.)
Now the critical result is the following:

Theorem 7.7 ~F is a congruence.

Proof See §7.6. This proof is not standard, but depends strongly on the
definition of w~; it is not true for the alternative in Remark (1) of §7.2,
and that is why we chose our definition. Theorem 7.3 is critical. [

From this we get, fortunately:

Theorem 7.8 ,-::c and ~+ are the same congruence.

Proof

(i) B C implies B C by Theorems 7.5(2) and 7.7, since »' is
stronger than =~ (take D to be NIL in the definition).

(i1) B »° C implies Ba' C, since [ 1+ D is just a special kind of
context. B

Now we know that we preserve ~ by substitution except in '+' con-
texts. What do we do if we have Bz C and wish to know samething about
B + D and C + D? Luckily, for an important class of expressions B and
C we can infer fram BxC thatB;scC, and then infer that B + D& C +D.

Definition B is stable iff B-5B' is impossible for any B'.

Thus a* stable behaviour is one which cannot 'move' unless you observe it.
Stability is important in practice; one reason why our scheduler in
Chapter 3 works, for example, is that it will always reach a stable state
"if it is deprived of external cammmication for long enough. Compare
the notion of "rigid" in Chapter 1; we may define a rigid program to be
one whose derivatives, including itself, are all stable.
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There are two main propositions about stability; first we prove a
lemma in a slightly more general fomm than we need for the propositions -
but the general form helps in the proof of Theorem 7.7 (skip the lemma
if you are only interested in main results, not proofs).

Iema 7.9 If B z+C and B-BB', then for each k there is a C' such
that ¢==C' and B' L' - o

Proof Suppose C' does not exist; we find D such that B +D #C+D,
contrary to assumption. Take D to be A, -NIL, where A is not in the
sort of B or C. Now since B-SB', we have ‘B+D=5B'. But if
C+D S then either (i) E is C+D, 48" since C +DAo NIT, but

B' 4% ; or (ii) CLE, 4B' by supposition; or (iii) D=E -
impossible since D is stable.

Hence B#D & C#D, contradicting B ~'c.
Proposition 7.10 If B ~°C then either both are stable or neither is.
Proof Direct fram Iemma 7.9 (B' ka' not needed) . 4

More important, for proof methods, is the following:

Proposition 7.11 If B and C are stable, and BnC, then B

Proof It is enough to show that B +D=C + D for arbitrary D, by
induction on k. We do the inductive step.

et BHD =>E:
(i) If s= then either E is B +D, and then C+D ===C + D, =B + D
by induction, or D == E, and then C +D ==E also (B =L E impossible
by stability).
(ii) Otherwise either D =S>E, and then C + D Se also, or B =S$E,
whence c=Lspa B (because Bw~C), whence alsoC+Dé>Fm E.

kK k
Thus we have found in each case an F s.t.C + D ékaE. The converse
arqgument is similar, so B + Dzkﬂc + D. R

Now for any quard g ¥ t , we can deduce fram Bz C (for any B,C)
that g.Bxg.C (Theorem 7.3), and hence g.B zcg.C since both are stable.

This implication holds in fact for any guard, by the following
Proposition (which is essential in the proofs of Chapter 8):

Proposition 7.12 For any guard g,
BxC implies g.B zcg.C.
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Proof By the above remarks we need only consider g = t. We prove

T.B + Dsz.C + D for arbitrary D, by induction on k. Inductive step:
Iet <1.B+D=25E. Then

(i) If s=e then either E 1s t.B +D, and then ©.C + D =¥ 1.C + Dw E
by induction, or D =*= K, and then r.C + D === E also, or t.B == E,
and then B =t E, whence C =E'>F~kE (since B=zC), whence also
1.C +D =E>szE.

(ii) Otherwise either D =2sE, and then C + D =2> E- also, or B ==E,

whence C =2=Fx,E (since BxC), whence also 1.C + D -

E,
As in Prop. 7.11, this ocompletes the proof. K g

By now these inductive proofs of Ryer appealing to the inductive

hypothesis only when e-experiments are considered, are becoming familiar;
we shall leave them as exercises in future.

7.4 Laws of Observation Congruence

We are going to prove three laws, for which we have strong evidence
that they say all that needs to be said about the strange invisible 1
under zc; this suggests that the apparently never-ending stream of laws
is drawing to a close! The evidence is that these new laws, together
with those of Theorem 5.3, have been shown to be complete for CCS without
recursion and value-passing. This means that any true statement B ~C
(in this restricted language) can be proved fram the laws; in fact the
laws of Theorem 5.3 are quite a lot simpler without value-passing, and
those of Theorem 5.5 are unnecessary without recursion.

One would expect to have to add same induction principle in the
presence of recursion; what needs to be added for value-passing is
less obvious (but in several more~or-less natural examples, including
those in Chapter 8, we have not needed more than we have already).
Theorem 7.13 ( 1 laws)

(1) g.7.B & g.B

(2) B+ T.B & 1.B

(3) g.(B +T.0+g.C & g.(B+ 1.C)

Proof (1) follows directly from Prop. 7.1 (1.B~B) and Prop 7.12.
For (2), we must prove for arbitrary D,k
B +t.B+Dx, ©t.B+D

k
and this follows the pattem of Props. 7.11, 7.12.
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For (3) similarly, we need
g.(B + 1.0)+ g.C + Dvg.(B + 1.C}+ D
which follows the same pattern, but needs the extra easy fact that for
s#%E , if g.C%E then also g.(B+r.C)=s=»E. i {
” Exercise 7.4 Canpleté the proofs of (2) and (3).
A more useful form of (2) is the following:
Corollary 7.14 E+t.(B+C) & 1.(B+C).
Proof
Exercise 7.5. Prove this, by first applying (2) to t.(B+0); you will
need another law of +. B
One may justify thé laws intuitively by thinking of any behaviour
B as a collection of action capabilities (the branches of its CT),

including perhaps some t-actions (the t-branches) which are capable of
rejecting the other capabilities.

Law (1) may then be explained by saying that, under the guard g,
the t-action of t.B rejects no other capabilities and therefore has
no effect. For Law (2), the capabilities represented by B are again
present after the t—action of t.B in the context B + 1.B, so t.B
itself has all the power of B + 7.B. For Law (3), an cbservation of
the left side may reject B by passing the guard g in g.C, but
this rejection is alrveady represented in g.(B + t-C) . But such wordy
justifications badly need support; dbservation equivalence is what
gives them support here.

Iaws (2) and (3) are absorption laws; they yield many other absorp—
tions.

Exercise 7.6 Prove, directly from the laws, that
(1)  t-(B +1.(B, + T.B))) + B, £r.(B, + 1.(B, + T.By))
(11) t-(B, + 1.(B, +By)) + B 1.(B, + t.(B, + B))
(iii) T (B; + o (B2 + T.Ba)) + o.By r.(B1 + .:(.(B2 + '[.Bs))
and consider how they generalise. un the other hand, disprove
«.(B+C) +a.C~ o (B + 1.0

by finding B,C which make them not =.

7.5 Proof Techniques

In conducting proofs, we may take the liberty of using "=" in place

of "" or """, adopting the familiar tradition that "=" means equality
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in the intended interpretation; this helps us to highlight our uses of
~ , for which care is needed because it is not a congruence. With this
convention, let us sumarise the important properties.

(i) 'The laws of ~ (Chapter 5);
(ii) B xt.B  (Proposition 7.1);
(iii) B =C implies Bz C (Corollary 7.6);
(iv) =~ is preserved by all operations except + (Theorem 7.3);
(v) BxC implies B=C when both stable (Proposition 7.11);
(vi) BzC implies g.B=g.C (Proposition 7.12);
(vii) The 1 laws (Theorem 7.13).
Since we mentioned that the 1 laws have a campleteness property, why
bother with x in proofs? The reason is to do with stability. We can
often show that a behaviour B of interest, not stable itself, satisfies
B = t.B*
for some gtable B*; so of course BxB* (but B{scB*, by Proposition 7.10!)
This expresses that B stabilises. Stable behaviours are often easier to
handle, and the constrained substitutivity of ~ often allows us to conduct
our proofs mainly in terms of stable behaviours. Chapter 8 should make this
point clear.

Many proofs can be done with our laws without using any induction
principle, though the laws are established using induction on .
There is, however, a powerful induction principle - Computation Induction
~ due to Scott, which we cannot use at present since it involves a
partial order over behaviours. We believe that this principle can be
invoked for the finer notion of cbservation equivalence alluded to in
§7.2, Remark(2); it remains to be seen how important its use will be.

7.6 Proof of Theorem 7.7
Theorem 7.7 z+ is a congruence.

Proof First, we show that Bz C implies B +D & C+D; that is, we
require (B + D) + Ex (C +D) + E for arbitrary E.
But (B+ D) + ExB + (D + E) (Theorem 5.3)

~C+ (D +E) (since B=C)

~{(C + D) +E.

Next we require that B »:s+C implies {g.B z+g.C ’
B\a z+C\a R
B[S] &'CS) ;
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e.g. wewant ¢g.B + Ew~g.C + E for any E. In each case the proof follows
the pattern of proof in Propositions 7.11, 7.12 (these Propositions are
stated in terms of zc, but the proofs are entirely in terms of ).

The critical case is B~ C implies B|D z+C[D. Assue B~ C and
prove B|D + E ~ C|p + E, for arbitrary E, by induction on k.
Inductive Step: let B|D + E ===E;

(i) If s #e, then either E =5 B', and then C|D + E =5 8' also,
or B|D =- 5", and then C|D éF':kE' for some F' (since
B~C so B|D=C|D by Theorem 7.3), whence C|D + E —-—-S—>F'zkE' also.

(ii) If s=e, then either E' is B|D + E itself, and then
clp + E==c|D +E, ~B|D + E by induction, or E == E', and
then C|D + E == E' also, or B|D —>B'|D'=E>E'. These are now
the three cases:
(a B' is B, and D-—>D'; then C|D —>C|D' and B|D'=~C|D'
by Theorem 7.3 so C|p’ =‘—E=>F'zkE' for same F', whence
clp +E _—E:.F'ng' as required.
) D' is D and B—>B'; thenby lemm 7.9 C==C'w~, B'
for same C' (this is the only use of B z+C —~ elsewhere
BaC is all that is needed), and we also have B'!DzkHC'ID
from Theorem 7.3, so since B'|D ==E', C'|D == wkE' for
same F'. So finally C|p +E==c'|D == F'~ E'.
(c) B £>B' and D —-)‘l>D'; then C =—-)‘—Y-=>C"~k+1B' for sare C',
whence C|D === C'|D" ~k+1B'|D' by Theorem 7.3, whence
c'|p' == zkE' for same F', whence also C|D + E = pr zkE'.
Thus we have found F' in every case so that C|D + E ———E‘«'F'mkE‘; by
symmetry, we have B|D + E~_ C|D + E which cawpletes the induction.
. B

k+1

7.7 Further exercises

We end this Chapter with some harder exercises, for readers interested
in the theoretical development.

Exercise 7.7 (Hennessy) . Prove the following result, which further
clarifies the relation between » and % :
B~C iff BSC or BF1.C or 1.BSC) .
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Exercise 7.8 We would like to know that if b<= o.b and B < a.B
then b & B; this states that, up to =, the recursive definition
b+ a.b has a unique solution. The argument in §3.4, proving-the
scheduler correct, used a mild generalisation of this result. The
following exercises lead to a more general theorem (for simplicity,
work without value péssing) .

(1) Prove: if Bma.B and CRa.C then B=xC.
(ii) Deduce: if B So.B and CSa.C then B sC.
More generally, let C[ ] be of form

Dl + 111.(D2 + 112.(.....(13m + um.[])...))
for m21, where at least one vy is not t.
(iii) Prove: if BzCIB] and C~ CI[C] then B=C.
(iv) Deduce: if B FCIB] and C« CIC] then B~ C.
(v) Deduce: if b<=CIbl and B G[B] then b= B.

Exercise 7.9 Consider a different definition of cbservation equivalence.
First, define a decreasing sequence of pre-orders RorSqrecsryy <o 3
B ,sOC is always true ;
Cc iff, for all s ,
if B==>B' then for same c', c=8>c' and B' S c’ .

B S

Thus we take only the first clause of the definition of et Then;

1
BgcC ifka.B,skC; BgC iff BgxC and CsB .
We may take z as a candidate for observation equivalence.

(i) Prove that g ,s are preorders, that = is an equivalence, and
that Bx C implies Bz C.

(ii) Prove that = is a congruence; in particular, that B £ C implies
VD, BD = CHD (first show that each S has this property). Thus
=~ and differ, since the latter is not a congruence.

2l

43

(iii) Find a simple example in which B = C but B# C . Also show (by
a similar example) that = does not respect deadlock properties in
the sense of Exercise 3.6.

This is why we rejected = as our notion of observation equivalence, in
spite of its somewhat simpler theory.




CHAPTER 8

Same proofs about data structures

8.1 Introduction

We have already shown same not quite trivial algorithms and systems
expressed in CCS. The point of this chapter is twofold. First we want
to show that familiar data structures, as well as algorithms, find natural
expression in CCS; second, we want to illustrate how the properties of
observation equivalence and congruence allow us to prove that systems work
properly. The data structures here give good proof examples. To what
extent they correspond to hardware realisations must be left open, but it
does not appear unreasonable that at least same hardware structures can be
faithfully represented in CCS.

8.2 Registers and memories

The simplest shared resource, which may be the means of interaction
between otherwise independent agents, is probably a single memory register.
Many concurrent algorithms have been represented in languages which pemmit
agents to interact only through 'shared variables' (usually 'writeable' as
well as 'readable'). We argued in §4.5 that algorithms are not always best
expressed this way — many people have recently made this point.

But if we do want a register, readable and writeable by one or more
agents, its behaviour may be well represented by REG(v):{a,y} defined by:

REG(V) 4= ox.REG(X) + yv.REG(V)

(write)
Two kinds of atamic experiment are possible:
REG(v) -% REG(w (write u)

REG(v) L% REG(V) (read v) (read)

We may also find it useful to define
IC 4 ox.REG(x)
- a register without initial content, which at first admits only writing.

If we define relabellings S; = aiyi/ay (1¢izn) where the o,,v;
are all distinct names, then we can define a memory of sort
{a1,Y1, ..o "an'Yn} by

MEMORY | = L&Z[Slj | ... II(XISn]
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or, using N to represent multiple composition:
)i (] o o

MEMORY =~ = 1sisnloc|:si] Ol OZ . On

Y Y I ¢

Note that this use of composition just places the i’egisf:ers side by sige;
they don't cammmicate with each other!

let us now suppose, more realistically, that we want to build a memory
of size Zk with just three ports:
(i) At o , it receives in sequence the k bits T e of a

memory address m , o<me2X s
(ii) At B it receives a value to be written at address m ;
(iii) At 7y it delivers the value stored at address m .
ILet us call the memory, storing values V= (vo, ...,v2k__1) . Mk('{'r):{u,B,;}.
We shall adopt a convention which is in fact a reality for magnetic core
memories; destructive reading. To write a new value u into address m
in Mk(;) , the envirorment will perform

LR ~om . BU.YX. ...
and ignore the value received at vy (which is bound to x); this value
will actually be Ve Thus to read the memory at m , the enviromment first
writes an arbitrary value (say 0) to m , receives and holds Vi and
writes Vi back at m ; it performs

E'mk-—l‘ ‘&“O'EO'YX'&“k—f .Emo.Ex.yy. B
where B (the continuing enviromment behaviour) will use x samehow, but
ignore y .

In summary then, we can express how we want Mk to behave by saying

that for any enviromment expression B of form

Emk_l. .Ean.Eu.Yx. B' (1)
the following observation equivalence must hold:

LM B Ne\B\Y & (M Gwm) | By /X Na\Bly  (2)

where v(u/m) means (vo, eV g Vg ..',v2k_1) .

This requirement is an example of incomplete specification; we do
not specify what happens if B supplies too few or too many address bits,
or acts strangely in sare other way. It is a natural incampleteness,
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because we might naturally compose Mk with a 'front end' agent w}‘xose" job
is to receive integer addresses, decode them into bit-sequences of length
k (complaining if the integer received is outside the range [O,Qk—ﬂ )
and conduct the correct reading and writing sequences with Mk . Also,
the incamplete specification actually makes the design of Mk easy, as we
shall see.

A specification which would be too incamplete would be to demand merely

that .
e .amO.Bu.YVm

> M (Viwm)

~

M ()
certainly Mk(x';') must have this derivation for every m = M _qr-e0 Mg
and every u , but this would not exclude urwanted derivations like

Mk(";) ==, NIT
- deadlock!

Now let us abbreviate {a,B8,y} by L , and define arbitrary sorts
L0= {ao, BO’TYO} R L1 = {al,Bl,?ll , asking only that all these names
@ ..y, are distinct and that aO'BO'YO'al'sl'Yl don't appear in IB ’
the sort of B . We will also abbreviate \o\f\vy by \L, \otO\BO\YO
by \LO, etc., and set Si = aiBiyi/aBY ,i=0,1.

First we can see that the specification (2) is equivalent to demanding
(M WIS1 [ BYW) = (M (vam) s ] | Byl /x} ), (3)
for any Bo of form aomk_l. .otomo.BOu.YOx. BE) ;  to deduce (2) from
(3) we note that

(MG [BIWL = (MG |B)B,N, (Rel~(1),(2),(4) )
= (M) 5,1 |BIS;T)\L, (Rel~(5) )
= (MG Is,] | B )L, (Rel=(3) )

with B") = B'[SO] ;
the other side of (2) transforms similarly, and (3) can be used to get (2).
Conversely to deduce (3) from (2) we work with R, = aBY/a B, v, , the
inverse relabelling to Sy ¢ and use Rel~(1),(3) knowing that ROOS0 =1,
the identity relabelling. Such manipulations should becare routine!

We now came to the design of Mk . MO(V) , the memory of size 1 con-
taining v , is given by

My(v) = CEILL(v) , where CELL(x) 4= fy.7¥x. CELL(y) (4)
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o 8 3%

M, (v)

(The o port is not used.)

Ve build M (%) (3,% each of length X, Vi is their concaten-
ation) out of Mk(;) and Mk(a‘r) by composing them with NODE: Lui-.oui'.1 y
whose job is to inspect the first address bit z which it receives and -
roughly ~ transmit the rest of the communication to Mk('\7) or Mk(ﬁ)

according as z = 0 or 1 . Precisely:

NODE <= az. NCDEZ

- - - 5
NODEi<= aZ.0;z. NODE; + BX.B;X.v;Y.vY- NODE  (i=0,1) ©)

and
‘ M G = (M @S] | M @IS T | NDE \L\L, (6)
« b3

- -
Notice that NODEi does not know how many bits to receive; it must be
ready for an address bit or a value, and act accordingly.

The diagram on the next page shows M, (¥) , with arrows indicating
the initial capabilities of the components. By swinging arrows about on
it, you can convince yourself that it works - and that 'wrong' sequences
deadlock; e.g. M3(\N7) =20.01.8u NIL .

(The idea to use as an example a memory built of nodes which 'use
the first bit to direct traffic' came from a talk with Nigel Derrett,
who told me that this method is used in practice.)

Having now defined Mk rather succinctly by (4) ~ (6), and specified
its intended behaviour by (1) and (2), we proceed to prove that it meets
its specification.
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Diagram of Mq(;) ’
showing initial action capabilities .
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Theorem 8.1 For any B of fomm Emk_i. .amo.Eu.yx. B' ,
(M () | BNL » (M (Tl/m) | B'{v/x} \L .
Proof For k = 0 we have, since v = (vo) y
(M@ | BNL = ( sy-?vo. CEIL(y) | Bu.yx. B' )\L
: = t.t.( CELL(u) | B'{vo/x} L (Expansion)
(Mo(\';(u/o)) | B'{v./x} )\ (Proposition 7.1)
as required. Now assume the theorem for k . Take B of form

&nk-;mk_l. .;mO.Eu.yx. B'
and consider Mk(\'7:v~v) , vhere ¥,% are of length 2k . We want
o . oo Vp oo
(M, W) | BIND = (M, (VW) (w/mm)) | B {(V'W)nkn/X} L
where m =mk_1,...,m0 . By symmetry it will be enough to prove this
for the case mk=0 , which is to say we want

kY

(M, @G | BINL~ (M (Flom):@) | B'{v/x} \L .
The left-hand side is, by (6),
( (Mﬂs_()} | Mk(w) [51] ] &E:)\LO\Ll Ii)\L
L0 L1 LULOUL1 - IB
(writing sorts below)
= (M @S, ] (MBS | (NODE[B)\L )L I\L, @)
where we have regrouped by repeated use of Res~ and by Cam~(1),
remambering that Lynlg = L,nly = @ .
Now recalling m =0 , by the Expansion Theorem
(NODEB) \L = . NODE | om_y- ...‘.;mo.gu.yx. B' )\L ,
Roadh e e .uomo.sou.yox.(NODElB')\L
by Proposition 7.1 and Theorem 7.3 . But this is a B, of the form
needed for (3), which we showed equivalent to the theorem at k (which

we're assuming); so recalling Theorem 7.3 - that ~ can be substituted
except under + - we can rewrite (7) as

=~ (M8, | (M Fa/m)S ] | Byv,/x} I\Ly L,

where BE) = (NODE|B')\L , so B('){vm/x} = (NODE|B'{vm/x})\L since x is
not a free variable in NODE . Now we can regroup, just reversing the
operations by which we got the form (7), to get

= (( Dﬁ((‘Z(u/m))ESO] | M G S,] | NODE )AL AL, | B' (v, /%) I\L
= ( Mk+1(v(u/m) W) | B'{vm/x} L as required. R
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Exercise 8.1 Suppose you have available a decoder, which accepts.an :
integer (assumed to be in the range [0,}—13 for some fixed k) and
decodes it into its bit sequence. That is:

DECODE <== M. _,. -.. -aM.C. DBCODE :{8,a,i} .

The integer comes in at § , the bits go out at ;,, and signals
completion.

Design another agent, called FRONTEND , so that when you campose
DECCDE , FRONTEND and Mk(;) with appropriate relabellings and
restrictions you get a system MEMk(\';) : {e,B,Y} satisfying

MEM (V) o~ om. (BxMEM(V(x/m) + Yy .MEM (V) .
(To write value u at address m , the user performs om.Bu. ... ; to

read the memory at m and bind the received value to y he perfomms
om.Yy. ... .) Prove the desired equivalence.

Hint: FRONTEND and DECODE must cooperate to produce expressions
of the form B , so that you can use Theorem 8.1 about Mk({;) .

Exercise 8.2 Can you think of a way to redesign Mk((;) so that the
outgoing value doesn't have to travel up the binary tree?

8.3 ¢Chaining operations
Suppose we have agents B, and B,

CHENC

and wish to join them like this:

It is natural to define a binary operation ™~ for this purpose.

Definition Iet B;:L, , ByL, and B#o ; then

~ =
BB, = (B,[6/8] ] B2[6/a] }\8 where § énames(thLz) .
Note that the definition is specific to B and o ; perhaps we should

. )
write B B o B, .
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We need to justify our definition by showing that the choice of $§ 5
doesn't affect it. To see this, suppose that §' ¢ nanes(LluLQ) , 88
Then

(B,[5'/81(B,I6' /ad)\s"
(B,[5'/811B,[8"/aD\8"(6/8"'] by Rel~(1),(2)
(B,[5"/8108/8" 1[B,[8"/a108/8" D\S by Rel~(4),(5)
(B,16/81|B,[6/aN\s by Rel~(3)

Note that Bl"B2 may form other links, depending on L, and L, ;
this doesn't affect our argument, but we are mainly interested in the

#

case Llan =g .

The importance of ™ is that it is associative; this property is
helpful when we need to chain several agents together. ILet us prove

associativity. Suppose B1:L1 ’ B2:L2 ' B3:L3 .

& @ ®

(B,7B)7B, = ( (B,[&/81[B,[8/a1)\6c/8] B /a1 )\

Then

choosing .s,;,énames(LluLzuLa) and &¢ ;
= ( (B,[&/B1[B, L&/ [E/BINS B [5/a1N8 )\E

by Rel~{4) and Res~(1) (we are pushing relabellings inwards, pulling
restrictions outwards) ;

= (B,[/8ILY/81B, &/ B1B [&/aD \6\L
by Rel~(5) and Res~(3) (check its side condition!) ;

= (B,[¥81[B,[85/aB1[B [t/ oD \p\s
by Rel~(3) and Res~(2) ;

= Bl"‘(Bz’"Bs) by symmetry.

Exactly the same can be done for double chaining; given two agents
p ; .
G
we want to join them together to give
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Definition ILet Bl:L1 ’ BQ:L2 and let o,B8,v,5 be distinct. Ther

B,CB, = (B,[n/8,0/61|B,[n/a,6/y1)\6\n

where n,0 ;!names(]'..luLQ) and n#8 .

It is easy but tediocus to check the associativity of T . We shall
use this operation in the next section.

Both ™ and T give us special cases of Theorem 5.8, the Expan—
sion Theorem; we just state it for 7™ , in the simple case where
B1'°°"Bn t {a,8} , i.e. no labels are present except the chaining
labels,

“@'“" "‘ ’

Expansion Theorem for ™ If B, ,e..,B_: {a,B} , and each is a sum
1 n
of guards, then

T{ox. (B]7B,~ ...TB) ¢ u;{.Bi a sumand of Bi}
+ J{&v. (B,7B,” ...TB}) ; 'lg'\vl.BI'Tl a summand of Bn}
+ r.(Bl:...’*Bi"Biﬂ{G&}"..."‘Bn) ;
Bv.B] a sumand of B; , u;c.Biﬂ a sumand of By, |
All that this says is that the only external actions occur at the ends of
the chain, and the only internal actions occur between neighbours. We
will use the corresponding theorem for T ; it's obvious enough, so we

do not write it down.

8,4 Pushdowns and gueues

Iet V be a value set; we use s to range over V*
What should be the behaviour PD(s) : {a,y} of a pushdown store in
which values are pushed in at o and popped cut at y ? A reasonable
suggestion is

PD(s) &= ax. PD(x:s) + (1)

if s=e then ;$D PD(e) else y(first s).PD(rest s)
Here ':' is the prefixing operation over V* , and '$' indicates
emptiness; we test the pushdown for emptiness by popping and testing
the value popped.
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Thus we want to build PD(s) to satisfy

PD(e) = oX. PD{x:e) + v$. PD(g)

PD(vis) = ax. PD(x:vis) + yv. PD(s) >(2)

What we shall actually build is PUSH(s) : {a,y} to satisfy

PUSH (¢) = ox. PUSH(xze) + y$. NIL

PUSH (v:s) ax. PUSH(x:v:s) + yv. PUSH(s) 3

the only difference being that PUSH(c) , when popped, degenerates
to NIL . This is easier to build, and it's also easy to build a
special front end, FRONT , so that (2) is satisfied by
PD(s) = FRONT PUSH(s) .
We build PUSH as a chain of cells, each of which can hold O, 1

or 2 values, terminated by an end cell holding $ . A cell holding
y is

CEf-Ll(Y) H {uIBI—YF 8}

CELL,(y) <= ox. CELL,(x,y) + Y. CELL (4)

Then the rest of the definition is

CELL ,(x,y) : {9, B, 1,8} a B
A xy
Y 8
CELL,(%,y) ¢= 8y. CELL, (x) (5)
CEILG : {U-I_BI;IG} LV SY:
Y 3
CELL, <= &x.(if x=$ then CEIL, else CEIL (x)) (6)
CELLy : oy} ‘j $
CELL, ¢= ox. (CELL  (x)CCELLg) + Y$. NIL %))

We show the successive configurations of a typical derivation,

starting from CE[L$ , in the diagram below.
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oD
Q’ b0
ZQ D NORNS

Q:@ §O

@"O;:o
t caehol

280

____Y_..__
The derivation C.E:Li[.$ ===t CEI_L (2, 6)..,CEL'I:.$ .

Now for any s = (V1""’V } let us define
PUSH(s) = CEIL (V 12 eeo ,,CELL (v, )'"CEI_L$ . 9)

Clearly PUSH(s) is stable; the fourth configuration in the diagram
shows you that no t—actions are possible. It is also reasonably
clear that every configuration will stabilise, given time, but that

external communication can occur before stability is reached.
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Iet us see what we need to prove (3), which is our aim. From
(9), by the Expansion Theorem, we get

PUSH(e) = CELLy = . (CELL, (x) SCELLy) + Y$.NIL

= ox. PUSH(x:e) + v$. NIL

so the first part of (3) is done. (Recall that we allow ourselves

to write '='

c
wheneverwe use a congruence, '~' or ‘'m7' , and

that '=' always implies '=' .) We also get

PUSH (v:s)

It

CEI_Ll(v)CPUSH(s)
ox. (CELL, (x,v) SPUSH(s)) + ?v.(CE:LLOCPUSH(s)) .

1

We therefore propose to prove

CELLQ(u,v)CPUSH(S) ~ PUSH(u:v:s) (10)
CEI.LO::PUSH(S) ~ PUSH(s) . (11)

These camnot be congruences (zc) since the left~hand side is wn—
stable in each case. But '~' is strengthened to '=' by a guard
(Proposition 7.12), so for example from (11) we deduce

yv. (CELL,ZPUSH(s)) = yv.PUSH(s) ;

applying the same technique to (10) we finally reach (3). We have
achieved equality (=) before substituting under ‘'+' .

To prove (10) and (11) we only need four little lemmas,

grouped together:

Lemma 8.2

(1)
(2)
(3)
(4)

CE]'..L2 (u,v) :.'.,‘C}E'.LL1 W) ~ (’_‘E:I..]:.1 () :IC}E{LL2 (v,w)
CEL.L2 (u,v)C CELL$ = CELL, (u) CCEILL1 (V)CCELT_.$
CE[.LO:: CELL1 w) = CELL1 (w) :CET_LO

CELLOCCE[L ] C]EILL$ .

Proof All by the Expansion Theorem; we need only consider the

first in detail.

a g - 3
Auv
% S~ s
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We have !

CE[LQ(u,v)CCElLi(w) = T, (CELL, (0} T CELL,(v,%})
~ CELL (w) CCELL, (v,w) by Theorem 7.1 .

For the last, we need the fact that CELL,CTNIL = CEL.L$ .

Exercise 8.3 Prove this simple fact. g

Now (10) and (11) follow:
Iemma 8.3

(1) CELL,(u,v)ZPUSH(s) = PUSH(uzv:s)
(2) CELL,CPUSH(s) ™ PUSH(s) .

Proof Iet S =Wy...,W ; toget (1), use the definition of PUSH,
and apply Lemma 8.2(1) repeatedly, then Lemma 8.2(2). To get (2), use
Lerma 8.2(3),(4) similarly. Note that = is preserved by £ since
the latter is defined without using + . ¥

86 by what we did before, we have settled

Theorem 8.4
PUSH(¢) = ox. PUSH(x:e) + v$. NIL

PUSH(v:s) = ax. PUSH(x:v:s) + yv. PUSH(s) .

Exercise 8.4 Analogous to (3), we may specify a gueue by
OQUEUE(e) = ox. QUEUE(x:e) + v$. NIL
QUEUE (v:s) = ox. QUEUE(v:s:x) + yv. QUEUE(s) .

(Note that ':'" is being used to postfix elements to sequences, as well
as for prefixing.) Make a very small change to the behaviour of
CEI..LQ(x,y) (5), and adjust the Lemmas to show that
—_ ~—~ o~ ~
QUEUE(s) = CEL'Ll(Vl) "’"“"CEm"l(vn) vCELL$
(for s = V1""’Vn)

satisfies the above equations.

Exercise 8.5 Design FRONT : {e,B,v,8} so that

FRONT _PUSH (s)

;_Eatisfies the equations (2) for PD(s) .
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We were rather careful in our é:lefinition (5) of CJE:L.L2 (x,vy) ;.
it must push y down before it can pop x . Was this necessary? By
considering diagram (8) and similar derivations you can probably
satisfy yourself that CELL, (x,y) con be allowed to pop x . What
happens to our proof though? Iet us redefine

CELL, (x,y) 4= yx. CELL, (y) + gy. CELL, (x) . g

We need only make sure that ILemma 8.2(1),(2) still hold.
For the first, we have by expansion
CELL, (u,v) CCELL, (W) =
yu. (CELL, (v)CCELL1 (w)) + 1. (CELL, (u) SCE[L2 (v,w)) (12)
o - B
SO}
which does not look right. But can the first term be absorbed into
the second? By Corollary 7.14 - a derived absorption law — we must show
CELL, (w) SCELL, (v,wW) = yu. (CELL, (v) OCELL, (w)) + B (13)

for some B . Expanding the left-hand side gives

a -TTTe B
7 o s
CE]'.Li(u)SCé:LLQ(v,w) = Yu. (CEIL, CCEIL, (v,w) + B (14)

1
while expanding part of this gives

NS}

CEILL, T CRLL, (v,w) = <. (CELL, () CCHEIL, (w) + B, . 1s)

™t

Now put (14) and (15) together:

(:E:LL1 (u) 'JCELL2 (v,w)
= ?u.(T.(CElLi(v)Ccm,Li(w)) +B) +B , =B say,
= yu. (CeLL, (vOCELL (W) + B by Theoren 7.13(3)
which is what we wanted! We now have (13), and this justifies the step
fram (12) to

CELL, (u,v) CCELL, (W) = r.(CELL, (W) CCELL, (v,w)) ,
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50 we still have Lemma 8.2(1). ?
“ Exercise 8.5 Show that Iemma 8.2(2) still holds, too.

Exercise 8.6 Give CELLO some extra freedam as well, and show that
all of Lemma 8.2 still holds. Why does extra freedom for, CE:LLO have
no effect on the deduction (12)-(15) above?

[Exercise 8.7 Complete the proof of the scheduler, half of which was
done in §3.4; it remains to show that the second constraint in Method
1, §3.1, is satisfied. You will almost certainly need the derived

‘ absorption law, Corollary 7.14.

Exercise 8.8 Re-examine Exercises 4.3 and 4.4, in the light of our
proof techniques.

As a deeper exercise, investigate what happens if the two GATEs
in the CONTROL part of the net are removed. CONTROL will not
satisfy the same equation, but the whole system may still function as

| specified. If so, can you prove it?

Exercise 8.9 We can get rid of CE:LI_.2 completely from the definition
of PUSH by defining

CELL, (y) 4= ox. (CELL, (x) CCELL, (y)) + vy. CELL, .

(Notice that we could.not then adapt our system to form a gueue, as in
Exercise 8.4!') .Carry out the proof for this changed system.




CHAPTER 9

Translation into CCS

9.1 Discussion

Many concurrent algorithms can be expressed in CCS with some lucidity.
On the other hand, the aim in designing a high level concurrent language is
(in part) to provide and enforce a discipline in the way in which components
commmicate and share their resources, partly to protect the programmer
from unwanted deadlocks. This often restricts (usefully) the behaviours
which may be expressed.

If such a language can be translated into CCS, its meaning is thereby
determined; we also cbtain a way of reasoning about the language. For
example, cbservation equivalences among its programs can be established,
and these may yield useful laws for program transformation.

In this chapter we give a translation for a rather simple language.
It is a subset of various languages in use; also Hennessy and Plotkin
[HP 1] have specified its semantics in detail, in a very different way.

Our translation is quite straightforward; the main reason for this
is that the scoping of program variables, which often requires the use of
a notion of enviromment in semantic specifications, is for us represented
directly by the restriction operation of CCS. However, when we examine
how to translate an enriciment of the language in which procedures may be
defined, and each procedure is supposed to admit several concurrent
activations, we discover a limitation of CCS in its present form (we can
handle a procedure which cannot be concurrently activated, however) .

The translation will be seen to be phrase-by-phrase; each phrase of
the language becames a behaviour program which is totally independent of
the context of the phrase. (Such translations are sametimes called macro-
expansions.) We shall write [C] to mean the translation of phrase C.

For exarple )

{IF E THEN C EISE C'}
will be constructed uniquely from §EI , IC] and {C'} . This means that
the construct "IF-THEN-ELSE-" in the source language can be thought of
just as a derived ternary behaviour operation. We can then think of the
entire source language as a derived behaviour algebra.
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9.2 The language P

Programs of P are built fram expressions E and comands C, using
assignable program variables X. We suppose a fixed set of function symbols
F, standing for functions f. A constant symbol is just a nullary function
symbol. We do not specify the value types of expressions.

The syntax 6f expressions is just
E::= X | F(E,...,E)
(This includes e.g. "+(X,%())" which is written "X+1").
The syntax of cammands is

C::= X:=E (Assignment)
| cc . (Sequential composition)
| IF E THEN C EISE C (Conditional)
| WHILE E DO C (Iteration)
| BEGIN X; C END (Declaration)
| ¢ AR C (Parallel composition)
| INPUT X (Input)
| ourPUT E : (Output)
| skIp (No action)

(Parentheses are used to avoid parsing ambiguities).

The main doubt about the meaning of P is to do with PAR. For
example, can the 'concurrent' assignments in the program
X:=0 ;
:=X+1 PAR X:=X#1
overlap in time? If so, the resulting value of X couldbe 1 or 2;
it not, it must be 2. Our first translation will yield the former; we
see how to get the latter afterwards.

9.3 Sorts and auxiliary definitions

Each variable X will be represented by a register (§8.2) of sort
{agryy}l- Recalling §8.2, we define

T C ey} & axREGE) ]
REG(y) :{a,v} € ax.REG(x)+ vy.REG(y)

Thus for X we will have LOCy = LOClayyharl:
we will abbreviate REG(Y)[UXYX\G‘{] by REGX(Y).
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We use Ly = {zax,y the complement of the sort of IOCy - in ’

}
X
defining the sorts of commands and expressions; we call it the access sort

of X.

Each n-ary function syfrlbol F (denoting function £) will be répre—
sented by

= .. o .
bg L . S ¢ e /%)) NIL

whose sort is {pl,....pn,'é}. So for a constant synbol - e.g. 2 - we
have b2 < p2.NIL.

Each expression E with variables Xiree- 'Xk will be represented by
a behaviour program of sort {YX yoee ,vxk,z}.. Thus expressions deliver
1

their result at o , and then die; this means that if [E} is the transla-
N

tion of E it hag the property TS
eearpV
[E] => B implies B = NIL.

In translating commands we often write, for sawe B,
(12l ox.B)\o

which we abbreviate to [E} result (px.B), defining the behaviour operation
result by

B, result B, = (B;IB,)\s.

Each command C with global variables Xirees ,Xk will be represented
by a behaviour program of sort L, U...UL. u{1,0,5}. We call this program [C];
it uses 1,0 for input and output and sign§ts its campletion at §. It then dies,

sos o8

SO fc] =58 implies B = NIL

Some auxiliary behaviour operations are useful in defining {C};

done = §.NIL

B before B, = (Bl[B/GJIB-BQ)\B (8 new)

B =

, Par B, (B1[61/6](B2[62/6]{(61.62.d0ne+62.61.done))\61\62

——— (s,s8, mnew)
Exercise 9.1 Use the laws of Theorems 5.3, 5.5 and 7.13 to show that
before and par are associative, and par is commtative.

We now have all we need to define the translations [E] and {C]
inductively on the structure of phrases.
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9.3 Translation of P !

For expressions:

X} = Yxx.Sx.NIL

EF(El,...,En) I = (|IE1][p1/p]| eee] KEnB[pn/prf) \pl...\prl

For cammands:

[%:=E}l = [E] result (px.axx.done)
fc;c'l = I} before [C']
fIF E THEN C EISE C'l =
[E} result px.(if x then [C] else ie'n
[WHIIE E DO Cl] = w, a new behaviour identifier,
with w 4= [E] result (px. if x then (IC] before
w) else done)

[BEGIN X; C END] = (LOCg|ICH)\Ly

ic paR C'l = [C}par {C'}

fmeur X1 = 1x.o.X.done

[OUTPUT E} = [E] result {p x.ox.done)
[sk1P} = . done

Remarks

(1)
(2

We are using \Lx to abbreviate \ux\yx, as was done in §8.2.
The identifier w for the WHILE camand must be different for every
such camand translated. A minor extension to CCS, adding expressions
of the form
fix b.B
(in which b is a behaviour identifier bound by the prefix "f£ix")
would avoid this inelegance. Such an expression may be understood as
b, where b&= B
where the identifier chosen is distinct from all others used. (The
notation can be extended to match the definition of parameterised
behaviour identifiers.) With the "fix" notation, we would write
[WHILE E DO C} = fixw. {E} result (...) .
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"Eb{ercise 9.2 Prove, by induction on the structure of expressions and
camands, that
(1) If E contains variables X, reees¥y then [E} has the sort
Ly veoouly uipl.
1 k

(ii) If the non—local (free) variables of C are xl,...,xk then
[C] has the sort Iy u...uly ufn ,5,3}. (Note that X is local
1 k

(bound) in BEGIN X; C END.)

Many simple equivalences over P can be shown from the translation.

{
Here are a few as exercises.

Exercise 9.3
(i) Prove [SKIP;C] = [C]
(ii) Prove [WHILE E DO CJ~{[IF E THEN (C; WHILE E DO C) ELSE SKIP]
(iii) If X is not a free variable of C, prove
{BEGIN X; C ENDJ ~ [C]
[BEGIN X; C; C' ENDJ ~(C; BEGIN X; C' ENDJ
{BEGIN X; C PAR C' ENDJ ~ [C PAR (BEGIN X; C' END)J}
(iv) If X is not in E, prove
{BEGIN X; IF E THEN C FEISE C' END] ~
[IF E THEN (BEGIN X; C END) EISE (BEGIN X; C° END)]
and investigate
? [BEGIN X; WHILE E DO C END] ~ {WHIIE E DO BEGIN X; C END} ?

(v) What can you conclude fram Exercise 9.1?

Exercise 9.4 Show that [X:=X + 11¥ yxx.&x(x + 1) .done., Simplify [¥:=01]
similarly. Now show, by brute force and expansion, that
[BEGIN X; X:=0; (X:=X +1PAR X:=X + 1); OUTPUT X END]
~ [OUTPUT 1] + [OUTPUT 2]
(Recall the properties of =~ and <, listed in §7.5)
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9.4 Adding procedures to P !

The block BEGIN X; C END creates a resource X for use by C;
the resource X is represented by a behaviour, accessed through the sort

Ly.

Procedures (of many different kinds) are examples of other resources
to create. Iet us add a new syntax class of declarations D to our
language, with the understanding that each declaration D is to be
accessed through an access sort I_.D Then we generalise the syntax of
block cammands to
BEGIN D; C END

and begin the syntactic definition of declarations by
D::=VARX | ....

The uniform translation of blocks will be

[BEGIN D; C END] = (ﬁDylncll)\LD

and the translation of variable declarations is now

IvAR X] = L0Cy (with access sort Iy

Variables are particular in that they communicate only with their accessors;
this is reflected in the fact that the sort of Locy is just ]T..X Procedures
may, we suppose, contain free variables and call other procedures, so the
corresponding behaviours will have a sort larger than the camplement of the
access sort.

Let us define

D ::= VAR X | PROC G (VALUE X, RESULT Y) IS Cg
and add to the syntax of commands

C ::=....|CALL G(E, Z)
The procedure declaration indicates that G is a one-argument procedure,
taking its argument (by value) into a local variable X; the body of G
(cammand CG) has free variables X and Y and the result of the pro-
cedure is the value in Y on campletion. The call passes the value of E
as argument, and assigns the result to variable Z. The access sort of G

is to be LG = {&G,YG}, and we can immediately write the translation of a
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procedure call: !

{CALL G (E,2)] = [E] result (px.;Gx.yGZ.;ZZ.dme)

We now have to say that the sort of [C]} , when C has free variables
xl,...,xk and free procedure identifiers G1""'Gm' is

Ly u.--ukauLG vesely ul1,0,8}. This will follow from the definition
1

1 il
of [D] for a procedure declaration. (In fact sort-checking is a good

first guide to correct definition, like type-checking in good programming
languages and dimension-analysis in school mechanics.)

We can give a first approximation (wrong for at least two reasons)
to the translation of procedure declarations:
? {PROC G(VALUE X, RESULT Y) IS CG] = g, where
g = (I0Cy|LOCy]| (qu.;Xx.[[CG] before vy Yy.?Gy.NIL))\LX\LY
Notice that this has sort L ulL "(LXJLYU{E}) where L, is the sort

G C
of CG; this will make the sort of the block right.

Are the free variables of CG treated properly? What output do

we expect from the following cammand CO?
BEGIN VAR Z; Z:=3;
. . BEGIN PROC G (VAIUE X, RESULT Y) IS Y:=Z;
BEGIN VAR Z;
CALL G (17, 2);
QUTPUT Z
END
END
END
The answer should be "3", since the body of G should use the outer Z,
If it used the imner Z the answer would be "no output" since locations
cannot be used before they are assigned.

Exercise 9.5 If you are interested to see how a mechanical evaluator
for P (via CCS) might work, simplify IICO] by first simplifying the
translations of subphrases as far as possible, and obtain

ic £ joureur 3 Iz o3.done.




143
The first mistake in g above is that it is not much use as a_res',ource,

since it dies after one use! Our other resources (registers) restore them-
selves (with possibly changed content) after use, so we may make g do the
same. T
Second approximation:

? [PROC G(VALUE X, RESULT Y) IS CGII = g, where

g<—'==(LOCX|IOCY| (qu.aXx.uCg} before YYY°YGY'9))\LX\LY
So the last thing g does is to restore itself. Notice that the restored
g 1is of fom (...)\LX\LY, so its local variables X,Y are not those of
the old g. But you should see how to allow G to have "own" variables
which are initialized at declaration and persist from call to call.

Exercise 9.6 ‘Translate the extended declaration
PROC G(VAIUE X, RESULT Y) OWN Z:= E is Cq
so that G's "own" variable % is initialised at declaration to
the value of E.

The second mistake in g is that there is no provision for it to
call itself recursively. If CG contains CALL G(-,-) then it will
demand a reply to agV for sane value v, and nothing can meet it. What
could meet it? The answer is: a fresh resource ¢ for use by CG.
Taking the clue fram the translation of blocks (which is the way resources

are provided for use), we obtain finally

[PROC G(VALUE X, RESULT Y) IS CG] = ¢, where
g 4= (L0C,|10Cy | (agkeayx. (g] 1€ D\L; before v,v.¥oy.9))\Ip\ly

(with access sort LG)

Exercise 9.7 If [ICG] has sort LC' check that

g: LGULC - (LXULYU{G})
yields the same sort for the right hand side of g's definition.

It is rather hard work to evaluate even simple recursive P programs
by hand via CCS. What would be the point of evaluating them? Well, the
purpose of our translation is to investigate the power of CCS, and also
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to indicate that properties of languages such as P (as distinct from °
properties of particular P programs) may thereby be established.
But a check on the validity of the translation would be helpful, and
could be provided by a mechanical CCS simplifier/evaluator. Peter -
Mosses has shown how Scott-Strachey semantic specifications expressed
in the lambda-calculus can be checked out by a lambda simplifier/
evaluator [Mos].

We must now examine a shortcoming of our translation of procedure
declarations. Since g only restores itself after returning (;Gy)
its result, it follows that although there may be concurrent calls of
G within the block of the declaration, for example

CALL G(6,Z) PAR CALL G(7,W),

the resulting executions of C s will not be overlapped in time; one
must take priority, while the other waits to use the restored g. (It
cannot access the inner g provided for recursive calls of G by
itself; that is restricted by \LG.) At first sight, we might hope to
allow for concurrent activations of G by making g restore itself
directly after receiving its argument:

? [PROC G(VALUE X, RESULT Y) IS C,l = g, where

g &= o (g (TOC,|LOCy | (agx. (g]ICED\L, before vy.yoy-NIL) \I\L)
(Note that we still have guarded recursion). Now the restored g may be
activated immediately after the first, and run concwrrently with it. But
we carmot be sure that the two (or more) g's will return their results
(;Gy) to the correct calling sequences - each of which is waiting on
Y, GZ!

There seems no natural solution to this problem in CCS as it now
stands. True, we may generously allow some fixed number of g's to
be created, as separate resources, by the declaration. This could be
done by ‘

? [PROC G(VALUE X, RESULT Y) IS CG]= gs, where

gs & and for each i

121N 93
g; 4= ag, FI0C 100 | (agx. (8] ICD\L; before vy.vg ;7.9 \Ip\Ly

with L, = {aG,i' YG,i; 1<i < N} now.

i
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Notice that each 95 restores itself after completion; only the N
distinct g; can be concurrently active. The calling sequence must
also be adjusted:

[CALL G(E,2) ] = [E} result {(ox. E_ ;2.0,,% . done)

156,15 G, i

This solution has one attraction; it may be realistic if we assume a
fixed bound N on the number of processors available. But we are
looking for solutions at a level of abstraction at which implementation
is not yet considered.

Even so, the 'right' solution is s;Jggested by what implementors
often do; that is, for each call of G to supply a return link along
with the argument. Each activation then knows which return link to use
in returning its result. But in CCS this would mean passing labels (or
names) as values, which we have excluded.

It is not trivial to give CCS this ability, and yet retain the theory
which we have developed, but it may be possible (in exploratory discus-
sions with Mogens Nielsen we have seen same chances). The fact that we
have not met this need until now shows that much can be done without
name—-passing, but its usefulness is certainly not limited to language
translations. We must leave the matter open.

Exercj.se 9.8 Generalise the (correct!) translation of procedure declara-
tion to allow several procedures to be declared mutually recursively
{(as a single resource) by

PROC G1 (VALUE X,, RESULT Y1) Is C1
AND =~ = -

ANDGk (VALUE Xk' RESULT Yk) ISCk

9.5 Protection of resources

We finish this chapter with same tentative remarks about mutual
exclusion between comands in P which would otherwise run concurrently.
There is no doubt that we can, in CCS, represent same methods for pro-—
viding mutual exclusion, but to provide methods which are robust, flexible
and elegant is a very hard problem of high~level language design which is
still not fully solved though it has been studied for about ten years.
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See for example [Hoa 1,2, [Bri 1]. CCS is unprejudiced, and intentiomally
so, towards the problem; what it can do is to provide a means for 'rigorous—
ly assessing a proposed solution.

If all we want is to prevent overlapped execution of assigrment
comands assigning to the same variable, it is easy to adopt the well-~
known semaphore method. As in §2.4, define
SEM:{7,¢} €= 7.$.SEM
SEMy = SFM[TFXsz/m‘)]

and redefine
IOCy = (ox.REG(x)) |SEM,

The access sort LX for resource X becames

Ly = (0,7, 0}

and the only change in translation is to redefine
{X:=E} = u.lE] result (px.&xx.da.done).

Exercise 9.9 Re-work Exercise 9.4 with this new translation, getting
.... ~JOUTPUT 2] instead of .... =[OUTPUT 1} + [OUTPUT 2}.

An altemnative, to allow larger cormands to exclude each other, is
to adopt the proposal of Hoare in "Towards a theory of parallel program-
ming" (referenced earlier). The idea is to allow the programmer to
declare arbitrary abstract resources, by adding a new declaration form

P::= .... |RESOURCE R
(where R is an arbitrary identifier) and a new command form
C::= .... |WITH R DO C
For example, the programmer may associate a particular R with the output
device, and adopt the discipline that every OUTPUT cammand occurs within a
"WITH R ..." context; he can thus protect a sequence of OUTPUT cammands
from interference. In translation, R is just a semaphore, so we specify
[RESOURCE R J}= SEM (with access sort Ip = {TIR,¢R})
and
fWITH R DO C] = nR.EC] before (¢R.done)

Hoare discusses the virtues and vices of this discipline. In particular,
he points out the possiblity of deadly embrace, or deadlock, as in
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(WITH R DO WITH R' DO C) PAR (WITH R' DO WITH R DO C') !
But he cbserves that a compile-time check can prevemt this; the program
must be such that any nesting of "WITH R .... " camands, with distinct
R's, must agree with the declaration nesting of the R's. For our trans-
lation we must add that, in "WITH R DO C", C must not contain "WITH R ..."
for the same R. Also the check must be more sophisticated in presence
of procedures, but can still be done by flow-analysis techniques.

Now we can formally state deadlock-freedom for C as follows:

1f fc] £5B is a complete derivation (54.4),

ie B~NIL, then S =1§ for same r.
(C does not 'die' without signalling campletion at 3). When the compile~
time check is satisfied, it should be possible to prove this property of
cammands (or a stronger property which implies it) by induction on their
structure, though we have not done it. But first we would have to remove
a simple source of deadlock — namely the attempt to use an unassigned
variable. This can be done by, for example, respecifying

[vAR X} = REGX(O) (not L(I‘X) .
The proof would be a lot easier without procedures.



CHAPTER 10

Determinacy and Confluence

10.1 Discussion

In CCS, non-determinate behaviours (in some sense of determinacy)
are the rule rather than the exception. The outcame — or even the
capability - of future observations may not be predictable, partly
because the order of two interdependent internal communications may
affect it, and partly because of the presence of two or more identical
guards in a sum of guards (e.g. T.Bl +1.B, or u.B1 + u.Bz) .

Nevertheless, we would probably classify almost all our case-studies
as determinate in some sense; the exception is the root-finding algorithm
of Chapter 4, where the root found depends upon the relative speeds of
concurrent fumction evaluations.

In this chapter we make precise a notion of Determinacy, and a
related concept Confluence, and show that a certain easily characterized
subclass of behaviour programs is guaranteed to be determinate. This class
also adnits a simple proof technique. It is not a trivial class; for
example, the Scheduling system of Chapter 3 falls within it, and in §10.5
we canplete its correctness proof using the special technique.

In this Chapter we shall for simplicity revert to pure synchronization;
that is, no variables or value expressions in guards. The results here
probably generalise smoothly to full CCS but we have not studied it.

As a first approximation, one may think it enough to say that B is

determinate if, whenever B—& B1 and B—é B2 for same x, then B1 and B2

are equivalent {(e.g. ~ or =); of course we would again require B1 and

B2 to be determinate. But this is not enough; for example B 3 NIL may
also hold, implying that the capability of a A-experiment is not determined -
though the ocutcome is! This motivates our definition of confluence. We
shall treat notions of strong confluence and strong detemminacy (so called
because they are allied to strong equivalence) in detail first - they will
be enough to give us the results we need here - and later we outline a more

general notion which is allied to cbservation equivalence.
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10.2 Strong confluence

Our notion of strong confluence will not imply determinacy in the
sense of the last section. We separate it from deteminacy because, by
itself, it implies a property of programs which supports our proof
technique, But determinacy will be needed as well when we show that all
programs written in a certain derived calculus of CCS are confluent and
therefore admit the technique.

The following proposition can be read as a definition of strong
confluence, except that it 'defines' the property in terms of itself:
Proposition 10,1 The behaviour program A is strongly confluent iff

(i) Whenever A 3B and A ¥C then either u=v and B~C

or there exist D and E such that B3D, CYE and
D~E .
(ii) whenever a¥s ;, B is strongly confluent.

Proof: TImmediate fram the definition to follow. ]

We may picture condition (i) as

B2+ D
u
A/ implies either w =v & B~C oOC ?
u
Y. C—E

-Such diagrams will be useful in proofs. Note that if p =v we have
two possibilities; the case B~C represents intuitively that A iB
and A ¥ C are essentially the "same action". Our definition of
determinacy will demand that this must be the case for u e A , but we
do not want to demand this for u =1 ; 2a¥B anda a3 c may arise,
for example, fram two different internal communications.

Now for our formal definition. As usual, we have to resort to a
sequence of properties for k2 0.
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pefinition A is always strongly O-confluent .

A is strongly (k+1)-confluent iff

B B3 D
Uz

(i) A/ implies either #=Vv and B~C or 3
g3

e ctE

for scme D and E ;
(ii) a L implies B strongly k—confluent.

A is strongly confluent iff it is strongly k-confluent for all k20.

Let us abbreviate "strongly confluent", “"strongly k-confluent" by SC,
SCk respectively. We first want to know that SC is a property of strong
equivalence classes, not just of programs.

Proposition 10.2 If A is 5C and A~A' then A' is SC.

Proof We show by induction on k that if A is SCk and A~A' then
A' is SCk . At k=0 there is nothing to prowve. Assume at k ,
and at k+1 assune A is SCk+1 and A~A'.

For part (ii) of the definition, if A’ L B' then by Theorem 5.6
AL B~B' for some B; but B is SCk, hence by inductive hypothesis

so is B' .

For part (i), suppose

B'
y B! /I N
v 1y B
A,\’L' , vielding for same B,C A'~ A —
Voo x o
Y 2

Then (since A is SCk+1) either w=v and B~C, so B'~C',
or for save D,E and D',E'

Bv _l, Dl

ha v T B! -, pt
B ? v S0 ¢
c U E c* —uaE'
¢
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c
However, SC is not preserved by & or ~ ; for example

C
o, B.NIL + B.o.NIL ~ o.BR.NIL + B.t.a.NIL

while the first is SC, the second is not. We take up this question

later.

For our main property of SC we first need a lemma to do with

longer derivations.

B E
v
Iema 10.3 If A is SC and A u then
—_— 1.,
]
B”J'-ui c
~7k,
11*1"” TR
either u=ui(sanei)and D, or B L Rp
I 2 .
c LR

Proof By inductionon n . Forn=0, C is A and take D,E to be

At n+1 we have

B

2’
N,
A2l

so either u=ny and A ~B , whence B

1
or (first case of inductive hypothesis for A 1)

Vo Hnte
———

I

'|_| u -ou-_ u. .-.u
B 1 B 2 i—-1YiHl n«t—lD

" 1
/ Yoo ¥ieaMieg Mok

A B!

. u
ul\“‘A/“T Vngg .

C

3

D|

D~ C by Theorem 5.6,
=y (122) and
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finding first B,B' since A is SC , then D' since A1 is sc,
then D, or (second case of inductive hypothesis)

! Hoyeo ol
B 1 B, 2 n+l

)

/ § !
27Vt o

1

E

u
A B'
RA/Z‘--“rﬁl c u
. N 5
1 il

Now we can deduce our main property as an important special case.

Theorem 10.4  (Strong Confluence). If A is SC and A-BB then
A~B.

Proof We show that if A is SC and A-5B then Az B, by induction
on k. Trivial at k=0; assume it at k, and at kH assuwe A is
SC and A-5B.

(1) If BB clearly A3p' also.
(ii) Tet A=S)A'. Then fran Lemua 10.3 we have, for some B',

either B=uB' or =g
ks L
N A T, an

In the second case, since A' is SC (Proposition 10.1), A’ zkA" by

inductive hypothesis; but ~ implies (Theorem 7.2) so in either

“x
case A' sz' as required.

The usefulness of the Strong Confluence Theorem is simply this: a
program A may admit many actions, and so may its derivatives, but to
find a B such that A~B we need only follow an e-derivation (a sequence
of t—actions) starting from A, provided we know A to be SC.

ADA ceeie... 5B

W W
To follow all other derivations (as, in effect, the Expansion Theorem
would do when repeatedly applied to A, A;,...) would often be heavy
work — and is unnecessary in this case.

In the next section we illustrate this saving on a toy example, which
we assume to be confluent (later it will be seen to be so on general
grounds). But we first need to define a class of derived behaviour
operations, called composite action.
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10.3 Camposite quards, and the use of confluence

For p;edu{tlh (u1|...|un) is a composite guard (n>1) whose
actions are given as follows, in the style of §5.3 (see Exercise 10.2,
end of §10.4, for richer cmlposite guards) : )

n>1 Guleeefuy) 5 Gy Lo eelugq buggl e lug) -B

" for each i, 1<i<n
n=1 mlhBﬁ5B

From this it is easy to deduce the following strong equivalences:

Proposition 10.5

(L (ui)-BNpi.B

(2) For n>1, (u1""|un)'B~ Z

...Iu ).B
1gicn n

i gl by gl |
(3) For any permutation p of {i1,...,n}, (uil...lun).B~(up(1)|...[up(n)).B
Proof Omitted. . B

For example (a|B|y).B~a.(8]y)-B + g.{aly).B + y.(a|B) .B~ B]v|a).B:
it just means that o,8,y can be done in any order. Note that we do not
require Upressrip to be distinct.

In same proofs it is convenient to define (ull...lun).A to be 2,
when n=go.

We now want to examine the toy system built from the cycler of

w
=]
@H
\
Iy
"
:
]
l
'
[
[
[
N

Exercise 2.7; notice that cy is cycling clockwise, while c, and ¢4
are cycling anticlockwise. Before going further you might try to guess

its behav1our (as the author did, for five minutes, and got it wrong).
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<, &~ ul.E.G.ci
c, <« uz.E.I.CQ
Cy “«= as'Y'6’03
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s is (cl|02[c3)\A. (A ={g,v,8})

We assume S strongly confluent.

S~ + 0,.5 + 0_.S

y+8y5 ¥ 0585 0545,

Now by expansion

where 8, . is (3.6.c1|c2|03)\A,

s, is (cllé.y.02|ca)\A

13

and 5, is (c,|c,[y.8.c )\ Al

12
By expansion again,

523~a2.53 + cts.S2

where S_ is (6-6-01|6-7-02|03)\A

and S_ is (s.a.cllczﬁ.s.cs)\A,

2

513~a1‘53 + cta.s1

where S, is (c1|§.y.02l;.-c§.c3)\A,

and 512~a1.s2 + “2‘81'

Now we need to consider So

where S is (3.6.c1lB.y.CQIB.Y.cs)\A,

and we find
T ¢ - =
S, > (6.clly.c2|y.6.c3)\A
. -
—>(6.c1[c2|6.c3)\A
Ls

whence by confluence SOwS.

Sl~ a1.50 (by Expansion) ~ ui.S,

82 ~ a2.SOwa2.S

while for S3 we have samething different:

()

ol
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T
S, —>(6.c1|y.cz|ca)\A
~u3.(6.c1|y.c2|?.§.c3)\A by Expansion
Nas.s by the same derivation as for So above,
whence by confluence Sszas.S.
So finally we get
c o o
Sy ® (a1|0t2).S P 85 F (a1|<13) S, 8y, = (uy]a).S
and at last
o
S = (a1[a2|,ot3) .5

which specifies our system. It was only at (1) that we were able to
ignore other actions in following a e-derivation, but such opportunities
will abound in even slightly bigger systems.

Here, we used cawposite actions only to abbreviate expressions which
we obtained. later, we will see that camposite guarding preserves confluence.

One final remark: in the above calculation we were careful only to assume
strong confluence of S, its derivatives, and expressions strongly equi~
valent to them. All this is justified by Propositions 10.1 and 10.2, but
we ocould well have wished to assume confluence of an expression which is
only cbservation equivalent to samething confluent. As we said earlier,

observation equivalence does not preserve strong confluence; but it does
preserve a weaker form as we shall see, and fortunately Theorem 10.4 applies
also to the weaker form - so all is well.

Exercise 10.1 Use confluence to find the behaviour of other systems with
the same shape as S, or as Exercise 2.7(i), but with different cycling
directions and/or different starting states (initial capabilities).

Is the disjoiner d of Exercise 2.7 strongly confluent? What
about the behaviour s in Exercise 2.7(ii)?
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10.4 Strong détemﬁ.nacy; Confluent Deteminate CCS

The natural definition of determinacy is as follows:

Definition ~Iet Ach, and let A be a program. Then A is strongly
r~-determinate ()\-SD) 1iff for all k A is strongly A-k—determinate
(- k)' where:

Bvery A is )\—SDO;

A is )‘_SDkﬂ iff

A4 B
(i) A<: implies B~C j;
C

(ii) A-%B implies B is A—SDk.

Definition A is strongly k- deteminate (SDk) iff it is A-SD, for
all xeA. A is strongly determinate (SD) iff it is SDk for all k.
A—determinacy for particular A may have some use, but we will only
consider determinacy for all .

Proposition 10.6
A is SDh iff

A 5B
(i) A<1 implies B~C ;
c

(ii) A-%sB inplies B is SD.
Proof Immediate. B

As usual, we have had to make an inductive definition and then prove
a more usable property. We also have that SD is a property of strong
equivalence classes:
Proposition 10.7 If A~A' and A is SD, then so is A'.
Proof Analogous to Proposition 10.2 but simpler. B
We use the abbreviation SCD (SCDk) for "strongly (k-)confluent
and strongly (k-)determinate? We lock for behaviour operations which
presexrve SCD, and first eliminate some which do not.
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Clearly both o.NIL and o.8.NIL are SCD, but

0.NIL|¢.8.NIL ~ o.(a¢.8.NIL) + o.(a]B}.NIL
is not SD, since o.B.NIL 4 (a|B).NIL. We shall have to forbid B, IB
except when B L B .L and L nL=¢ But this is not encugh; a.NIL
and o.B.NIL are SCD, but

G.NIL|0.B.NIL ~ 7.8.NIL + a. (a.8.NIL) + .....
is not SC, since S.N]I.EyB is impossible. The problem here is that
the g-action of o.NIL may be observed either by o.8.NIL or externally.
In effect (thinking of pictures) we shall have to prevent the sharing of
ports, i.e. one port supporting two links.

In sumary, we will forbid BllBQ, but allow B1HB2 when
B1 g, B2:L2, L1 n L2=¢; we may call this operation rd-composition
(rd = "restricted disjoint").
(Note: we have mostly avoided the operation ||, and indeed its definition
needs same care. Precisely, it is given by B1[ |B2 = (B1|B2)\A where
A = names (L(Bi) nL(B2)); we can get a different result if we take
A = names (L) nL,) for arbitrary sorts L,,L, for which B :L, and
B2 I_.2 Strictly therefore, in each use of || we should make explicit the
names which are restricted; but in most cases these will be implied by the
sorts of the argument expressions.)

Also we will forbid B1 + B2 (see remark in §1C.1) but allow (u1|...lun) .B,
canposite guarding, which includes (simple) guarding as a special case.

We denote by DCCS the derived calculus whose operations are:
Inaction(NIL), Camposite Action, rd-Camposition, Restriction and
Relabelling; we now show that every DCOCS program is SCD. (Skip to
§10.5 if you are not interested in the proof.)

Proposition 10.8 1Inaction, Restriction and Relabelling preserve both
the properties 8C, and SDk for all k.

Proof Clearly NIL is SCDk Let us just prove that if A is SCk
S0 is A\g; the remainder are equally simple. For the inductive step
on k, suppose A is SCk+1 and

u/7B\m u B
A\a\ , so A/

VT (of
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Then either yu=v and B~C, whence B\o~C\o also, or for same D
and E, since y,v 4'{a,§},

B-LD B\a-2sD\q
l s SO also l
cE C\a HE\a

(We have of course used that ~ is a congruence, Theorem 5.4).
also if Aa-YsBla then AMHB, so B is SC, whence also (by induction)

B\a is SCk. , [r:4

For Composite Action we can prove more (which we need in handling
recursion later), namely that an n-camponent guard raises the level of
SC and SD by n:

Proposition 10.9 If A is SC, (respectively 8p,) then (ull...luh) A is
5Cin (respectively SDk-hn)'

Proof By induction on n, for fixed k. For n=0 there is nothing to
prove, since (u,|...Ju ).A is just A in this case.  Now let A' be
(u1|...|un+1).A, and let us show that A' is 8CG ...

Assune [
A,}?B
N

Then u'vs{ui""'“nﬂ}' Either el say, and B', C' are both
(u1|...|un).A up to a permutation of the guard, whence B'~C' by

Proposition 10.5(3), or U= s VSN say, and then

n+i

/9/7
\C'/

Also, if A' BB' then =u 4, S3y, and B' is (ull...lun).A which is
Sck+n by inductive hypothesis. Hence A' is 8 it 4t We leave the
SD part to the reader. B

o R e
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Corollary 10.10 If A is SCk (resp. SDk) and n 21, then

T e

(ull...lun).A is. 8, (resp. sD, ).
Proof TImmediate, since SCk_m implies SCk+1 if n21. @

Thus far, the operations preserve SC and SD separately. We
can only show that rd-Camposition preserves them together.

Proposition 10,11 If A1 and A2 areSCDk, with A1:L1,A2:I{2 and

LianL,=¢, then A1”A2 is sp .

Proof Take the inductive step; assume 1-\1 ,A2 are SCDk+1 and show
first that A ||&, is SC,, - Suppose
B
u
//}
X

C

Al s,

There are essentially four cases:

(i) B is BlnAQ,C is Al” c, {an A action and an A, action), and

13
=B Bl a,_v
N , yielding T
vV /
A,—C, Al e,

actions), and

(i) B is B/ ||a, C is C1” A, (two B

Then either ¥ = Vv and Bi”‘C1 , whence also B1||A2~ C1”A2 , Or

v
B;— D, By || 3,2~ Dyl &,
u ! , whence also u 1
Cy—Ey Call ap=——E4ll Ay



(iii)

(iv)
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B is B1|| B2,u='r, C is C1|| A2 (a communication and an A1
action), and .

B -

A 271 A -
A/v7 and A,— B (Ael,'nL,)
1. 2 2 1 2
\ C
1
But then v #1, since Al A2—>‘» C is impossible.
Hence
v v
By—+ D, }31" BQ——*D1H B,
1 , whence also T H
Ci'—”El C1" A2—-—7E1" B2
B is Bl” By, C is C1H Cyy M=V=T (two commnications), and
A B1 B -): B2
Alﬁ AQ{;’ (Ate L nL)
e S
1 2
If A=A' then Xi=X' also, and since A,,A, are SD, ,, we must
have B1~C1, BQNCz, whence also 31” B2~C»1|| C2 .
Otherwise
B ND Y p B || B,&D,|| D,
— — —
1 11 and 2— 12, whence 1 2 1z 2
A AL T
Ci E; C, -+ E, 01|| c, Elﬂ E,

Only in th,e fourth case did we need determinacy of Al' A,.
To camplete the SC part : if A1|| A2—B~>Blll B, then, for i=1,2
Bi is either Ai or a p- or A-derivative of Ai , hence
is sC, and SD, so SCD, so by induction B || B, is also
SCDk .

For the SD part it only remains to show that

A, 13,

As B
A implies B~C (e h).
\\ C
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Now either both actions are fram A or both fram A,, since
Lln L2 =@ (our first use of disjointness). In the first cdse

2P
A , vhence B, ~C, , whence B(i.e. B,||A)~C(i.e. C |l 2.).
1A 171 1152 i
~ c
1
Similarly in the second case. ]

It remains to show that definition by recursion in DOCS guarantees
that the behaviour identifiers are SCD.

Prop, 10.12 Every behaviour identifier b in DCCS is SCDk for all k.

Proof. By induction on k . By guarded well-definedness, (55.4) '
the definition b0<= may be expanded (by substituting Bb for any
b where necessary) until every behaviour identifier is guarded.
Formally, we apply Kénig's lama to find

by ~ B'bo
containing no b unguarded. Assuning then that every b 'is SCDk '
we deduce that B'b is SCDk+1 fram Props 10.8, 10.11 and Cor 10.10 -
the latter being cricial in raising k to k+1 . It follows that b,

and similarly each other behaviour identifier - is SCDk 1 - bl

Exercise 10.2 We can also allow guard sequences in camposite guards,
e.g. (0.B) |y or even (a.(B]Y))[6 . These still preserve SCD.
Prove the analogue of Prop 10.9 and Cor 10.10 for camposite guards defined
as follows:

(i) u is a composite guard
(ii) If Jyre-er9, are camposite guards (nz1), so are
(9y-+"*wg) and (g, l--lg).
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10.5 Proof in DCCS; the scheduler again

We are interested in systems definable in DCCS. The toy system
of §10.3 is an example; each S there is defined in DCCS, and the
system S is also definable in DCCS by
| o, lleylie,

Of course we were /able to use the fom S ~ (c le ]cs)\A since ~
preserves SCD, and also S ~ o 823+a2 813+<:L3.S12 : neither of these
are DCCS expressions, but the faithfulness of ~ to SCD justifies their

use in the proof.

Iet us return to the scheduler problem of §3.1 ;
we had

l c &= y.E.(EI&).cJ

and defining \ci<= Ol B, ¥44,/2675] we get

~ *
oy Yi.a..(B |Y1_,_1 (*)

We also had
sch & (s]cll....lcn)\yi...\yn
and the second part of our specification demanded

SchII(HumIHB )~(a161) 6}
3#1 %1 J

Now - getting rid of the start button - we have

Sch & - (8, 7))l el - Ml o

Now we may define, for 2<j<n,

w

ve=c. | ol 8.
cje=csll o571l 8

whence easily

T o~ l *
cj j'T°(TiYJ+1 3 (*)

We shall show, then, that
Sch1 ~ otl.Bl.Sch1 (2)

(¢ampare equation (2) in §3.4, and note the remarks there)
where

Sch 4= &,. (5,17, .c ll c}ll ...l <}
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Clearly Sch L ® the left side of equation (1) above. Notice that all
our definitions — in boxes above - are in DCCS. Since SCD is a property
of ~ equivalence classes, we can use the equivalences (*) freely.

Sch, ~ ;1.((61172).c1|| esll ooeelled)

and :
@ Ivp) el el -l e
5 Ei'c1” ;3'02" cé]l eeedd] .
£ 51'01“ cé” cé” eeeddl c;l-i” ;1.cx'1 ()
Ei.(clll cpll <ol c' ¥,-00)
while 01|| cé“ <l cx'1—1” ?1.0;1 '

5 5 B v e llegll ol oy~ Schy

Putting this together, using Theorem 10.4 and known properties of =~ ,
we get Sch1 = El.El.Sch as required.

The crucial part was the long => derivation (+) in which the B 4
action could be persistently ignored; without SCD we would have had to
deal with this action by absorption, as we did for the first part of the
scheduler specification in §3.4. Thus SCD in effect guarantees absorption.

One point is WO]—:‘th noting. From c! ~ yj.r.(rl}'j_'_l) .cj! we can
easily get cé ~ Yj'yj +1'C3" , and this transformation would slightly
clarify our proof. But we don't know that SCD is preserved by =~
(in fact we know it is not, in general). Our proofs will therefore
be less delicate when we have a weaker property OCD which is preserved
by = , and which also allows a version of Theorem 10.4. We now turn to

this question.

Cbservation Confluence and Determinacy

How should we arrive at a property OCD, wesker than SCD but supporting
our proof method (based on Theorem 10.4) and preserved by =~ ? For
determinacy, we would probably look at



A implies B~ C

as a possibility. But the use of A will prevent preservation of
this property by =~ ; you will see this if you try diagrams as in
Prop. 10.2. So we might try

A B
A/

A implies B

\C

Q
[¢]

This is closer to what we will adopt, but notice that it already entails
a sort of confluence, for if B I B' then we would have B'x C also,
whence Bw~B' (this is because adp also holds) .

Since we want to harmonize with our definition of » we do wish to
use = rather than ->; if we cannot separate determminacy from confluence
then a definition which covers both seems necessary. We should also deal
with = (seA*) rather than just A (Aeh).

What should confluence say about
r B ‘
A% ’ r,s e A* ?
.\C '
It should imply same cammutativity of observations, in so far as r and s
differ; B should admit an ebservation which 'is in same sense the excess
of s over r , written s/r , and C should admit r/s , in such a way
that the two results are suitably related:

s/
B—_—/;»D

r B
A/s implies r
e XS
we shall need to adjust "=" slightly, but first we define r/s . Intuitively
we get it by working through r fram left to right, deleting inr and in s
any symbol which occurs in (what remains of) s . 'Thus r/s is unchanged
by a permutation of s , but depends upon the order of r .
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Definition For r, se A* , r/s, the excess of r over s ,

is given recursively by

e/s = ¢
(r.v) /s A.{r/s) if A isnot in s
r/(s/A) otherwise .

1t

Examples: r s x/s s/x
aBy Bya € €
aBa ay Ba Y
afa BgayB o YB

We list some of the properties of "/" without proof (we write r pemm s
tomean r is a permutation of s):

(i) If r perm s then r/s=s/r=ce¢.
(ii) If s pem s' then r/s = x/s',
s/r perm s'/r .
(iii) If r and s have no menber in common then
r/s=r , s/r =5,

(iv) If r perm ss' , then 1r/s pemm s' and s/r=c.
(v) r.(s/r) pem s.(xr/s). ’

(vi) r/5152 = (r/sl)/sz, rlrz/s = (ri/s).(rQ/(s/rl)).

There are many others, same needed in proving the propositions below,
but we will not give those proofs here.

We now define OCD by a sequence {O(ZDk ; k=0}:

Definition. A is always OCDO .

A is OCDk+1 iff

B B & p
(1) A}/: inmplies “k for save D,E ;
c cis g
(1) aAs>B implies B is OCD.
A is OCD 4iff it is (IZDk for all k=20.
Note the use of By rather than x ; this is essential in showing that

~ preserves OCD.
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Thus if A is OCD we have for each k, for example:

€
r,B B ==D

A < . implies c é)lék (determinacy)
C
B B B ——€—>g
aA % implies Cc tsE H
C
s
=n B=12
{8
. k N
A% implies Cc =5 E H
C
}, B B == B
A Q implies C £ E .

The following results hold:

Proposition 10.13 If A is OCD and A=A' then A’ is OD. @@

Exercise 10.3. Prove this by showing that if A is OCDk and A w~ A’

2K
then A' is ka.

£
Theorem 10.14 (Confluence) If A is OCD and A=—B then A =z B.
Proof We show it for N by induction on k . For the inductive step,
assune A is OCD and AE=B.
s s
(i) If B ==B' , then clearly A = B' also.
s
(ii) If A =>A' then, because A is D,

B == B"
l(k for same B', C
€
A'=C
But A' is OCD, so by induction A' ,-:',kC , whence A' = B' as required.
Proposition 10.15 If A is SCD then it is OCD. D}

From this we inmediately know that DCCS, and anything x to a DCCS program,
is O(CDD. Although these facts do not imply it immediately, we also have

Proposition 10.16° The operations of DCCS all preserve the property OCD. R
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Two remarks should be made. First, we do not know of any derived ‘
calculus of CCS whose programs are all OCD but not all SCD. It would be
very interesting to find ane, particularly if it contained systems
which are intuitively determinate in same sense, like earlier case-studies
in these notes, but cannot be expressed in DOCS. First of course we would
want to extend the present notions, and DCOCS, to allow value-passing.

Second, the reader may wonder why we introduced SCD at all, since
OCD has the property which we used in proofs and and preserves ~x 3 OCD
has the advantage that it is a property of behaviours (~ congruence classes),
not only of programs. The reason is partly technical; the crucial property
of SCD (Cor 10.10), vwhich provided for recursively defined behavicurs in
DCCS, camnot be established for OCD.  Also of course the stronger notion
may yield stronger methods.

Tn conclusion: we have found a derived calculus of CCS which possesses
an interesting property, and it is possible that other derived calculi may
be found with useful properties. For confluence and determinacy, there is
a strong connection - still to be explored - with notions in Petri's Net
Theory, particularly the notions of (absence of) Conflict and Confusion
and the subclass of nets called Marked Graphs [CoH]. Other authors have
explored confluence in various settings. The origin of the idea appears
to be the Church-Rosser theorem for the A-calculus; Church-Rosser properties
are discussed by Rosen [Ros] . Huet [Hue] studied conditions under which
term-rewriting systems are corfluent; the principal difference here is that
our rewriting relations B ana g, are indexed by labels and sequences.
Keller [Kell introduces a confluence notion into parallel camputation;
his rewriting relations are indexed, but his definition of confluence does
not exploit the indexing.

The author's impression is that confluence is a deep notion which (as
with most deep notions) manifests itself very differently in different
formal or mathematical settings. We have not invented it, but only found

" it same new clothes,



CHAPTER 11

Conclusion

11.1 what has been achieved?

We hope to have shown that our calculus is based on few and simple
ideas, that it allows us to describe succinttly and to mandpulate a wide
variety of computing agents, that it offers rich and various proof
techniques, that it underlies and explains same concurrent programming
concepts, and that it allows the precise formulation of questions which
remain to be answered (e.g. which equivalence relation to employ). It
also appears to have same intrinsic mathematical interest. Thus we
claim to have achieved, to some extent, the aims of articulacy and
conceptual unity expressed in Chapter O.

In the next few sections we examine CCS critically (though briefly)
in one or two respects; in doing so same suggestions for further work
arise very clearly. In the final section we propose same other directions
for the future.

11.2 Is CCS a programming language?

It is not universally agreed what qualifications justify the title
"programming language". Iet us try to examine CCS critically with respect
to same possible qualifications.

First, we have not said how to implement it on a camwputer (with one
or many processors). Implementation of concurrent programs raises a host
of difficult questions. To start with, such a program is often (at least
in our case) non-determinate; should its 'implementation' be able to
follow any possible execution, by having the power to toss a coin fram
time to time or by using a machine whose parts run at unpredictable
relative speeds? Or is it more correct to talk of, not a single implemen-—
tation, but a set of implementations for each program, each implementation
being deteminate?

Again, would one allow an implementation which is, if not sequential,
conducted under some centralised control? This would be rather unsatisfactory,

since the calculus is designed to express heterarchy among concurrently
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active components. But since it can express systems which generate
unboundedly many such camponents, it is natural to expect an implemen—
tation to administer (not necessarily in a hierarchic mamner) the
allocation of a fixed number of processors in executing the components.

An implementation problem arises, even with CCS programs with a
Fixed number of concurrent components, and even if there are enough
processors to go round. In the general case vhere the components are
arbitrarily linked and where each one may have at each mament an arbitrary
set of communication capabilities, our primitive notion of synchronised
camunication does not admit direct realisation by hardware (at least by
current techniques) as far as the author knows. Jerry Schwarz [Sch] has
exposed the difficulty and proposed a solution, vhich can indeed become
simple in special cases but is not so in general. So CCS does not (yet)
have the property that its primitives have primitive realisations. We
claim rather to have found a commmication primitive which allows other
disciplines of commmication (e.g. by shared variables, or by bounded or
unbounded buffers) to be defined, and vhich can be handled mathematically.
There is no a priori reason that any such primitive should also be
simple to realise. But we may coampare the primitives of the A-calculus
(functional abstraction and application), or of carbinatory logic (the
conbinators and cambination); ten years ago these may have been thought
to require very indirect realisation, even via software, but they are
now being realised directly by hardware.

let us look at another qualification usually expected of a practical
programming language. It should not only have a powerful and not too
redundent set of constructs, but should also encourage disciplined and
lucid programming. This can mean that its constructs are conceptually
rather non-primitive; consider the sophisticated array manipulations of
ATGOL 68, or — closer to concurrency - the monitors of Hoare. On the
other hand a calculus, as distinct fram a programming language, should
contain only a small set of conceptually primitive constructs (it will
be hard to theorize about it otherwise), and should remain largely
impartial with respect to design decisions which aim at 'good' program-
ming. Then the calculus can serve as a basis for defining practical
languages, or for building practical hardware configurations. Of course
one cannot distinguish sharply between the aims of conceptual parsimony
and practical utility, but it is fairly certain that a language for
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writing good large programs will itself be too large to serve as a
theoretical tool, and its design may well be motivated by current
inmplementation techniques; when these change it ¢an grow obsolete.

Returning to the A-calculus as a prime example, it is now widély
accepted as a medium which can be used to define and discuss sequential
algorithms, and richer languages for them. Although CCS is not as small and
simple, it is intended as a step towards such a medium for concurrent
systems. We also hope to have shown that at least same concurrent
systems can be expressed lucidly in CCS; perhaps this is because it
is not yet small enough!

11.3 The question of fairmess

In temms of CCS we may state a property, which is argusbly a
property of real systems and should therefore be reflected in a model:
if an agent persistently offers an experiment, and if an cbserver
persistently attempts it, then it will eventually succeed. A model
which reflects this property is sometimes called fair. Is CCS fair?

Consider the program

B = “|A.NIL, where {” may be defined by b<= 7.b .
The only actions of B are

B2 Y| NIL and B-T>B .
So B has no e~derivative which does not offer a A-experiment; this
may plausibly be taken to mean that B persistently offers the experiment.

Now iwf we. consider only the derivations of B, the infinite deriva-
tion B -f-s suggests that the experiment is not bound to succeed even if
attempted by an observer; hence we may choose to infer that CCS is not
fair.

On the other hand if we consider observation equivalence, we can
easily deduce :
B =~ ALNIL
and we argued in Chapter 1 that if an agent offers an experiment and
has no alternative action - as here )\.NIL has no alternative to its
offer of an A-experiment — then an observer's attempt at the experiment
is bound to succeed. It therefore seems that the insensitivity of =
to infinite unobservable action makes CCS fair, at least for this one
example. This is slightly strengthened by noticing that the agents

g

I

S,
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B1=A.NIL+TN, BQ=A.NIL+T(A.NIL+T(”), o
which do not persistently offer a A-experiment, are not equivalent to B

(though all equivalent to each other).

Indeed, we may tentatively formalise "B persistently offers A"
for arbitrary B as follows:

Definition B must A iff B =2>B' implies 3B".B' 2= p",

Then it is easy to prove that

BaC implies VA.(B must A<= C must A)
showing that, under this definition, observation equivalence respects
the persistence or non-persistence of offers.

But this is very far from a demonstration that CCS is fair; for
example, there are alternatives to the above definition, and a much
more detailed investigation seems necessary to decide which is correct.
Even if we oould conclude that CCS is fair, with the present notion of
observation equivalence, the fact remains that other equivalences (see
the remarks in §7.2) which respect the presence of infinite unobservable
action ~ and are therefore unfair in view of the above discussion ~ may
have other factors in their favour. We must leave the question open.

oOther authors have focussed more directly on the fairness issue.
Phueli [Pnu 1, 2], for example, shows how “eventually" (closely allied
to fairness, as seen from the first paragraph of this section) can be
represented in a temporal logic. It would be interesting to combine
such a treatment with our algebraic methods.

11.4 The notion of behaviour

This work has been concerned throughout with expressing behaviour.
We have tried not to prejudge what a behaviour is, but rather regard it
as a congruence by considering which expressions can be distinguished by
observation. At first we hoped this approach would lead us to one obviously
best congruence relation, and entitle us to say that - within our chosen
mode of expression - we have defined behaviour. This has not transpired;
the discussion in §7.2 shows that there is still latitude for choice in
the definition of observation equivalence, and same (though not all) of
i;.he choices induce different congruences.

However, we have provided a setting in which the latitude for choice
is not embarrassingly great, and in which the consequences of each choice
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can be examined. It is not improbable that a best choice will thus
emerge. Furthemmore, although the calculus itself cannot claim to be
canonical since alternatives exist for the basic operations and their
derivational meaning, the same approach to behaviour can be taken for
many alternatives.

Our methods should be contrasted with what has often been
done in providing a denotaticnal semantics for programming languages,
following the work of Scott and Strachey [SS]. The method - a very
fruitful one - is to define outright one or several semantic domains,
built fram simple domains by such standard means as Cartesian product,
function space construction and (for nondeterminism) a powerdamain
construction [Plo 1, Smy]; then the semantic interpretation of phrases
in these damains is specified by induction on phrase structure. The
approach has given immense insight, and yet it was found that the match
between denotational and operational meaning was sametimes imperfect;
this mismatch was first exposed by Plotkin for a typed a—-calculus [Plo 2].
We found a mismatch again for the model of concurrent processes presented
in [MM]}. There is no reason to expect, a priori, that an explicitly
presented denotational model will match the operational meaning; the
latter should serve as a criterion for the correct denotational model,
not vice versa (see also §0.4). Of course, it would be satisfying to
find an explicit presentation of a model which does meet the criterion;
this may entail extending our repertoire of damains and domaiil construc-
tions, as found in [HP 1] where so-called nondeterministic damains and a
tensor product is used.

We can summarise our approach, then, as an attempt to calculate with
behaviours without knowing what they are explicitly; the calculations
are justified by operational meaning, and may help towards a better
understanding — even an explicit formulation - of a domain of behaviours.

11.5 Directions for further work

(i) In Chapter 9 we explained a simple high-level language in terms of
CCs. It will be interesting to see how far such languages can be
so explained, and how CCS may help in their design. For example,
in ‘that chapter we exposed an apparent deficiency of the calculus,
vwhich could be removed if we allowed labels tb be passed as values
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(iii)

163

in communication. What effect would such an extension have on our
theory? And is the extension really necessary, or can we find a
way of simulating label-passing with CCS as it stands? (An analogy
is that the A-calculus does not take the notions of memory and
assigment as primitive, but can simulate them.)

Although hardware devices can be described abstractly as in §8.2,

it is not clear how to extend the calculus to deal with detailed
timing considerations, or to bring it into harmmony with existing
description methods which deal with timing. We have same grounds
for hope here; for example, Luca Cardelli [Car] has recently con-
structed an algebra of analog processes (whose commmnication signals
are time functions) and has shown it to be a Flow Algebra [Mil 2]
that is, it satisfies the laws presented in Theorem 5.5. However,
Flow Algebra deals only with our static operations (Camposition,
Restriction, Relabelling) and it is the dynamic operations (Action,
Summation) which are more committed to the idea of discreteness

and synchronisation in commmication. I am not campetent to judge
whether it is desirable, from the engineering point of view, to build
hardware camponents which realize these dynamic operations. An
alternative may be to try to find a continuous version of CCS, but
how to do it is unclear.

In Chapters 9 and 10 we were able to find two interesting derived
calculi. In particular DCCS, determinate CCS, has certain simple
properties which facilitate proof. (Since Chapter 10 was written,
Michael Sanderson has with little difficulty extended DCCS to allow
value-passing.) It is important to isolate other subclasses of
behaviour, characterised by intuitively simple properties, and to
find for any such subclass a derived calculus which can express
only its members. Of particular interest, for ekample, would be a
calculus of deadlock-free behaviours. Again, it would be illuminating
to find that certain known models correspond to derived calculi;
possible cases are Kahn/MacQueen networks of processes [KMQ], and
the Data Flow model of Dennis et al [DFLI.

(iv) As far as proof methods for CCS are concerned, we appear only to

have made a beginning. On the theoretical side, we should lock
for cawplete axiamatizations for subcalculi, where these are
possible; the results in [HM] and [HP 2] go same way towards this.
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On the more practical side, campleteness (which may not be possibie
for the full calculus anyway) is less important than a repertoire
powerful and manageable techniques. In our examples we have found
a few useful techniques; in particular we found it useful to work
not just with congruence (£) but with equivalence (~) also, and
this immediately suggests that other predicates of behaviour may be
used with advantage. Further, we often wish to show that an agent
meets an incawplete specification, i.e. one which does not determine
a unique behaviour; this was illustrated by the examples of Chapters
3 and 8. In these examples the incomplete specification could be
expressed within the terms of CCS, and we would like to discover
how far this is possible in general, and whether — when possible -
it is natural.

More particularly, concerning proof techniques, the question of
recursive definitions and induction principles needs further study.
For our definition of cbservation equivalence and congruence we are
able to identify a class of recursive definitions which possess
unique solutions (up to =~ or < }: see Exercise 7.8. We believe
this class can be considerably widened. It was this uniqueness
vhich allowed us to do certain proofs, e.g. the scheduler proof

in Chapter 3, without appealing to any induction principle. But

ast we' remarked at the end of §7.5, we believe that the Computation
Induction principle of Scott will apply in the presence of a finer
version of observation equivalence. The strength of this principle
is that it works without assuming unique solutions of recursive
definitions; it allows us to deduce properties of least solutions
with respect to a partial ordering of behaviours. But it remains

to be seen how important the principle will be in practice; moreover,;
since the finer observation equivalence appears to be unfair (in the
sense of §11.3) there is a delicate and difficult problem in relating
proof theory to the conceptual correctness of the model.

We are not discouraged by the emergence of this problem. On the
contrary, we believe it to be intrinsic to concurrent computing, not
rerely a defect of our approach, and are rather pleased to see it
emerge in a sharp form.
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{vi) Finally, and fundamentally, however successful we may became in
working within CCS, its primitive constructs deserve re—examination.
Are they the smallest possible set? Are other constructs needed
to express a ricdher class of behaviours? How can we relate Petri
Net Theory to the ideas of observation and synchronized cammunication?
By repeatedly returning to such basic questions we may hope to get
closer to an underlying theory for distributed camputation.



APPENDIX

Properties of congruence and equivalence

Direct equivalence =
Strong congruence ~
Observation equivalence

o~
~
C
o
i

Cbservation congruence
B = C implies B~ C implies B Sc implies BpC

Observation congruence " is also denoted by equality
"="_ though many laws (as their names indicate} hold for
strong congruence "~" or even direct equivalence "z".
Except where indicated, the laws are those of Theorems
5.3 and 5.5 generalised by Theorem 5.7 .

Summation
Sum = (1) B1+B2=BZ+B1
(2) B1 + (B2 + Bs) = (B1 + B2)+ 133
(3) B+NIL=B"
(4 B+B=B

Action
Act = o%.B = of.BIY/X}
where ¥ is a vector of distinct variables
not in B ,

Campogition
Com = Let B and C be sums of guards. Then
B|C = }{g.(B"|C); g.B' a summand of B}
+ J{g.(B|C"); g.C' a sumand of C}
+ Y{r. B(E/A}|C"); oX.B'a sumend of
B and gE.C' a summand of C}
+ J{r.B"|C'{E/X}); oE.B'a sumand of
B and oX.C' a summand of C}
provided that in the first (second) summand
no free variable of C(B) is bound by g.

eee §5.6
ees §5.7
eee §7.2
eee §7.3

s EX 5,2, Cor 7.6



Com ~ (1)
(2)
(3)

Restriction
Res = (1)
(2)
(3)

Res ~ (1)
(2)
(3)

Relabelling
Rel = (1)

@

3

Rel ~ (1)

(2

3)

(4)

(5)

Identifier

167

B |IB_ =B_|B
1!2 2'1

B =

, (B,IB,) = (B,[B,)|B,
BINIL = B

NIL\R = NIiL

(31 + BQ)\B =B\ + B\p

(g.B)\g = [ NIL if g=name(qg)
{g. (B\g) otherwise

B\a = B (B:L, a¢ names (L))

B\o\g = B\p\a

(31132)\01 = Bi\a|132\a _

(Blle,B2zL2, ad names (LlnLg))

NIL{S] = NIL
(B1 + BQ)[S] = Bl[S] + BQES]

(g.B)IS] = S{(q) . (B[S])

B[I] =B (I:L > L the identity mapping)
B[S] = B[S'] (B:L and S{L = 8'L)
B{S][8'] = B[S's5]

B{SI\B = B\a[S] (B = name (S(a)))
(B11B2)[S] = Bl[SllBQES]

Ide = Let b(X) & B, then

Conditional
Con = (1)
(2)

b() =

B (E/x)

I_ftruethe_nB1 elseB2=B1

if false then B1 else 32 = B2

Uncbservable action T

L
(2)
(3)
(4)

dg.t.B = g.B

B+ t.B=1.B

g.(B + 1.C)+ g.C = g. (B + 7.C)
B+ 1.(B+C) =7.(B+0C)

«s. Theorem 7.13

.so Cor. 7.14
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Observation Equivalence
(1) Bz=t.B

(2) = is preserved by all operations except +

(3) BzC implies B = C when B,C stable
(4) Bz C implies g.B = g.C

ion
Iet B = (Bll... le)\A, where each
Bi is a sum of guards. Then

B = Z{g.((Bil...lBi' leee 1BO\R);

g;Bi' a summand of Bi' name (g) ¢ A}

+ U, ]... 18] B/} .. 1B 1. IB)\A);
ux.Bi' a sumand of Bi' a. .Bj' a summand
of Bj' i+ 3}
provided that in the first temm no free variable
in Bk(k #+ i) is bound by 9.

i

... Prop. 7.1

«ss Theorem 7.3

.es Prop..7.11
«ee Prop. 7.12

«e« Theorem 5.8
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