Syntax

Syntax

Wolfgang Schreiner Research Institute for Symbolic Computation (RISC-Linz) Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

Syntax

- Symbols for building words,
- Structure of words,
- Structure of well-formed phrases,
- Structure of sentences.

Only syntactically correct programs also have a semantics.

Examples

Arithmetic

- Symbols: 0-9, +, -, *, /, (,)
- Words: numerals.
- Phrases: arithmetic expressions.
- Sentences: phrases.

Pascal-like programming language

- Symbols: letters, digits, operators, ...
- Words: keywords, idents, numerals, ...
- Phrases: expressions, statements,
- Sentences: programs.

Languages have internal structure.

Backus-Naur Form (BNF)

Specification of formal languages.

- Set of equations.
- Left-hand-side: non-terminal
 Name of a structural type.
- Right-hand-side: list of forms
 (Terminal) symbols and non-terminals.

```
\langle \textit{non-terminal} \rangle ::= form_1 \mid \textit{form}_2 \mid \ldots \mid \textit{form}_n
```

Example

```
\begin{split} &\langle \mathsf{digit} \rangle \ ::= 0 \ | \ 1 \ | \ 2 \ | \ 3 \ | \ 4 \ | \ 5 \ | \ 6 \ | \ 7 \ | \ 8 \ | \ 9 \\ &\langle \mathsf{operator} \rangle \ ::= + \ | \ - \ | \ * \ | \ / \\ &\langle \mathsf{numeral} \rangle \ ::= \langle \mathsf{digit} \rangle \ | \ \langle \mathsf{digit} \rangle \ \langle \mathsf{numeral} \rangle \\ &\langle \mathsf{expression} \rangle \ ::= \\ &\langle \mathsf{numeral} \rangle \ | \ (\langle \mathsf{expression} \rangle \ ) \ | \\ &\langle \mathsf{expression} \rangle \ \langle \mathsf{operator} \rangle \ \langle \mathsf{expression} \rangle \end{split}
```

Structure of an expression is illustrated by its derivation tree.

Ambiguous Syntax Definitions

Expression 4*2+1 has *two* derivation trees!

Unambiguous definition

```
\begin{split} &\langle \mathsf{expression} \rangle \, ::= \\ &\quad \langle \mathsf{expression} \rangle \langle \mathsf{lowop} \rangle \, \langle \mathsf{term} \rangle \, \, | \\ &\quad \langle \mathsf{term} \rangle \, \\ &\langle \mathsf{term} \rangle \, ::= \langle \mathsf{term} \rangle \, \langle \mathsf{highop} \rangle \, \langle \mathsf{factor} \rangle \, \, | \, \langle \mathsf{factor} \rangle \, \\ &\langle \mathsf{factor} \rangle \, ::= \langle \mathsf{numeral} \rangle \, | \, (\langle \mathsf{expression} \rangle \, ) \\ &\langle \mathsf{lowop} \rangle \, ::= + | \, - \\ &\langle \mathsf{highop} \rangle \, ::= * | \, / \end{split}
```

Extra level of structure makes derivation unique but syntax complicated.

Semantics

We do not need to use artificially complex BNF definitions!

Why?

Derivation trees are the real sentences of the language!

(Strings of symbols are just abbreviations of trees; these abbreviations may be ambiguous).

Two BNF Definitions

Concrete syntax

Determine derivation tree from string abbreviation (parsing).

Abstract syntax

Analyze structure of tree and determine its semantics.

Tree generated by concrete definition identifies a derivation tree for the string in the abstract definition.

Abstract Syntax Definitions

- Descriptions of structure.
- Terminal symbols disappear.
- Building blocks are words.

Abstract syntax is studied at the word level.

```
\langle {\sf expression} \rangle ::= \\ \langle {\sf numeral} \rangle \mid \\ \langle {\sf expression} \rangle \langle {\sf operator} \rangle \langle {\sf expression} \rangle \mid \\ \textit{left-paren} \langle {\sf expression} \rangle \textit{ right-paren} \\ \langle {\sf operator} \rangle ::= \textit{plus} \mid \textit{minus} \mid \textit{mult} \mid \textit{div} \\ \langle {\sf numeral} \rangle ::= \textit{zero} \mid \textit{one} \mid \dots \mid \textit{ninety} \mid \dots
```

Structure remains, text vanishes.

Set Theory

More abstract view of abstract syntax.

 Non-terminal names set of phrases specified by corresponding BNF rule.

Expression, Op, Numeral

• Rules replaced by syntax builder operations, one for each form of the rule.

```
numeral-exp: Numeral \rightarrow Expression compound-exp: Expression \times Op \times Expression \rightarrow Expression bracket-exp: Expression \rightarrow Expression
```

Terminal words replaced by constants

```
plus: Op
zero: Numeral
```

World of words and derivation trees replaced by world of sets and operations.

More Readable Version

- Syntax domains.
- BNF rules.

Abstract Syntax:

$$\begin{split} E \in & \mathsf{Expression} \\ O \in & \mathsf{Operator} \\ N \in & \mathsf{Numeral} \\ E ::= N \mid E \, O \, E \mid (E) \end{split}$$

O ::= + | - | * | /

N is just set of values.

Mathematical Induction

Strategy for proving P on natural numbers.

- ullet Induction basis: Show that P(0) holds.
- Induction hypothesis: assume P(i).
- Induction step: prove P(i+1)

Proposition There exist exactly n! permutations of n objects.

Proof We use mathematical induction.

- Basis: There exists exactly 1 = 0! permutation of 0 objects (the "empty" permutation).
- *Hypothesis:* n! permutations of n objects exist.
- Step: Add a new object j to n objects. For each permutation $\langle k_{i_1}, k_{i_2}, \ldots, k_{i_n} \rangle$ of the n objects, n+1 permutations result: $\langle j, k_{i_1}, k_{i_2}, \ldots, k_{i_n} \rangle$, $\langle k_{i_1}, j, k_{i_2}, \ldots, k_{i_n} \rangle$, \ldots , $\langle k_{i_1}, k_{i_2}, \ldots, k_{i_n}, j \rangle$. Since there are n! permutations of n objects, there are (n+1)*n! = (n+1)! permutations of n+1 objects.

Structural Induction

Mathematical induction relies on structure of natural numbers:

$$N ::= 0 \mid N + 1$$

- ullet Show that all trees of zero depth has P.
- ullet Assume trees of depth m or less have P.
- ullet Prove that tree of depth m+1 has P.

Arbitrary syntax domains:

- ullet $D ::= \mathsf{Option}_1 \mid \mathsf{Option}_2 \mid \dots \mid \mathsf{Option}_n$
- ullet To prove that all members of D have P
 - 1. Assume occurences of D in Option_i have P,
 - 2. Prove that $Option_i$ has P.

(for each Option $_i$).

Example

 $E: \mathsf{Expression}$

 $E ::= \mathsf{zero} \mid E_1 * E_2 \mid (E)$

Proposition All members of Expression have the same number of left parentheses as the number of right parentheses.

Proof

- 1. zero: left(E) = 0 = right(E).
- 2. $E_1 * E_2$: $\operatorname{left}(E) = \operatorname{left}(E_1) + \operatorname{left}(E_2) = \operatorname{right}(E_1) + \operatorname{right}(E_2) = \operatorname{right}(E)$.
- 3. (E'): left(E) = 1 + left(E') = 1 + right(E') = right(E).

Simultaneous Induction

$$S ::= *E*$$

$$E ::= +S \mid **$$

Mutually recursive definition of syntax domains.

Proposition All S-values have an even number of * occurrences.

Proof We prove by simultaneous induction on S and E "all S-values and all E-values have an even number of \ast occurences".

- 1. *E*: number(S) = 2+number(E) which is even, since number(E) is even.
- 2. +S: number(E) = number(S) which is even.
- 3. **: number(**) = 2 which is even.