
BeKomp Problem Set 10 due date: 26/30 January 2015

Problems Solved: 46 47 48 49 50

Name:

Matrikel-Nr.:

Problem 46. Consider the program

static void permutations(char[] a, int i)
{

if (i >= a.length)
{

System.out.println(new String(a));
return;

}
for (int j=i; j<a.length; j++)
{

swap(a, i, j);
permutations(a, i+1);
swap(a, i, j);

}
}

where a call permutations(s.toCharArray(), 0) prints all permutations of
string s.

1. Draw a recursion tree for a call permutations(<abcd>,0) (where <abcd>
denotes the character array with elements a, b, c, d). What is the height
of the tree? What is the number of nodes in every level of the tree? What
is the total number of nodes in this tree?

2. Give a recurrence for the total number S(n) of calls of swap in an execution
of permutations(a,i) where n = a.length-i.

3. Give a summation formula for S(n) by adding the number of calls in every
level of the recursion tree.

4. Give a complexity estimation S(n) = O(T (n)) for some closed formula n
(justify your estimation semi-formally).

Problem 47. Take that recursive program

f(n,b) ==
if n < 1 then return 0
d := floor(n/3)
return b + f(d,1) + 2*f(d,2)

Let C(n) be the number of comparisons executed in the first line of the function
body while running f(n, 0) for some positive integer n.

1. Write down a recurrence for C and determine enough initial values.

2. Solve that recurrence for the given initial values and arguments n of the
form n = 3m.

Berechenbarkeit und Komplexität, WS2014 1

BeKomp Problem Set 10 due date: 26/30 January 2015

3. Prove by induction that your solution is correct.

Problem 48. An n-bit binary counter counts in 2n−1 steps from (00 . . . 0)2 = 0
to (11 . . . 1)2 = 2n − 1 and in one more step back to (00 . . . 0)2 = 0. The cost
of a step is the number of bits changed at that step. (For instance, the cost of
increasing a 4-bit counter from 1011 to 1100 is 3 since 3 bits are modified.)

1. Consider how often bit position i changes in the 2n cycles and compute
the sum of the number of changes of all positions. The amortized cost is
this sum divided by the number of cycles.

2. Compute the amortized cost by applying the potential method.

Use as the potential Φ(ai) of counter ai after the i-th application of the
increment operation Φ(ai) = b(ai) where b(ai) is the number of 1s in the
binary representation of the counter.

For the computation of an upper bound of the amortized cost ĉi derive
inequalities b(ai) ≤ . . . and ci ≤ . . . using the notion t(ai) for the number
of bits reset from 1 to 0 by the i-th increment operation.

Problem 49. Consider the following program as an informal sketch of an un-
derlying RAM program which is to be analyzed in the logarithmic cost model.
Analyze the time and space complexity:

n = read()
p = 1
while n > 0

p = 2 * p
n = n - 1

q = 1
while p > 0

q = 2 * q
p = p - 1

write(q)

Specify the asymptotic time and space complexity of the program depending on
the input N by Θ-notation.

Problem 50. Consider a RAM program that evaluates the value of n! =
∏n

i=1 i
in the naive way (by iteration). Analyze the worst-case asymptotic time and
space complexity of this algorithm on a RAM assuming the existence of oper-
ations operation ADD r and MUL r for the addition and multiplication of the
accumulator with the content of register r.

1. Determine a Θ-expression for the number S(n) of registers used in the
program with input n (space complexity).

2. Determine a Θ-expression for the number T (n) of instructions executed
for input n (time complexity in constant cost model),

Berechenbarkeit und Komplexität, WS2014 2

BeKomp Problem Set 10 due date: 26/30 January 2015

3. Determine a O-expression for the asymptotic time complexity C(n) of the
algorithm for input n assuming the logarithmic cost model for a RAM
(with cost al ∗ rl for operation MUL r where al is the digit length of the
content of the accumulator and rl is the digit length of the content of
register r).

Hint : approximate in the asymptotic analysis summation
∑b

i=a T by in-
tegration

∫ b

a
Tdi and solve this integral; you may use a computer algebra

system or WolframAlpha for this purpose.

Berechenbarkeit und Komplexität, WS2014 3

