Problems Solved:

| 41 | 42 | 43 | 44 | 45

Name:

Matrikel-Nr.:

Problem 41. Given two algorithms A and B for computing the same problem. For their time complexity we have

$$t_A(n) = \sqrt{n}$$
 and $t_B(n) = 2^{\sqrt{\log_2 n}}$.

- 1. Construct a table for $t_A(n)$ and $t_B(n)$. Can you give a value for n after which one of the algorithms always seems faster than the other one?
- 2. Based on your result of the question above, you may conjecture $t_A(n) = O(t_B(n))$ and/or $t_B(n) = O(t_A(n))$. Prove your conjecture(s) formally on the basis of the O notation.

Hint: remember that for all x, y > 0 we have

$$x = 2^{\log_2 x}$$
$$\log_2 x^y = y \cdot \log_2 x$$
$$\sqrt{x} = x^{\frac{1}{2}}$$
$$x < y \Rightarrow 2^x < 2^y$$

which may become handy in your proof.

Problem 42. Analyze the (worst-case) time and space complexity of a Turing maschine which computes the sum of two numbers. The input $(k, m) \in \mathbb{N} \times \mathbb{N}$ is encoded as $1^k 01^m$ and trailed by \sqcup 's.

Note that you are expected to provide an explicit definition of the TM that is analyzed.

Problem 43. Let T(n) be the number of multiplications carried out by the following Java program.

```
int a, b, i, product, max;
1
2
      max = 1;
3
      a = 0;
      while (a < n) {
 4
5
        b = a;
6
        while (b <= n) {
7
          product = 1;
8
          i = a;
9
          while (i < b) {
10
            product = product * factors[i];
            i = i + 1; }
11
12
          if (product > max) { max = product; }
          b = b + 1; }
13
14
        a = a + 1; \}
```

1. Determine T(n) exactly as a nested sum.

Berechenbarkeit und Komplexität, WS2014

2. Determine T(n) asymptotically using Θ -Notation. In the derivation, you may use the asymptotic equation

$$\sum_{k=0}^{n} k^{m} = \Theta(n^{m+1}) \text{ for } n \to \infty$$

for fixed $m \ge 0$ which follows from approximating the sum by an integral:

$$\sum_{k=0}^{n} k^m \simeq \int_0^n x^m \, dx = \frac{1}{m+1} n^{m+1} = \Theta(n^{m+1})$$

Problem 44. Let T(n) be total number of calls to tick() resulting from running P(n).

```
procedure P(n)

k = 0

while k < n do

tick()

P(k)

k = k + 1

end while
```

end procedure

- 1. Compute T(0), T(1), T(2), T(3), T(4).
- 2. Give a recurrence relation for T(n). (It is OK if your recurrence involves a sum.)
- 3. Give a recurrence relation for T(n) that does not involve a sum. (*Hint:* Use your recurrence relation (twice) in T(n+1) T(n).)
- 4. Solve your recurrence relation. (It is OK to just guess the solution as long as you prove that it satisfies the recurrence.)

Problem 45. Let T(n) be given by the recurrence relation

$$T(n) = 3T(\lfloor n/2 \rfloor).$$

and the initial value T(1) = 1. Show that $T(n) = O(n^{\alpha})$ with $\alpha = \log_2(3)$. *Hint:* Define $P(n) : \iff T(n) \le n^{\alpha}$. Show that P(n) holds for all $n \ge 1$ by induction on n. It is not necessary to restrict your attention to powers of two.

Berechenbarkeit und Komplexität, WS2014