Problems Solved:

36	37	38	39	40

Name:

Matrikel-Nr.:

Problem 36. Let the enumerator problem $E P$ be to decide for a given enumerator M and word w, whether M eventually writes w :

$$
E P:=\{(\langle M\rangle, w) \mid M \text { writes } w\}
$$

Show that $E P$ is undecidable by reduction of the acceptance problem to $E P$.
Problem 37. Let $M=\left(Q, \Gamma, \sqcup, \Sigma, \delta, q_{0}, F\right)$ be a Turing machine with $Q=$ $\left\{q_{0}, q_{1}\right\}, \Sigma=\{0,1\}, \Gamma=\{0,1, \sqcup\}, F=\left\{q_{1}\right\}$ and the following transition function δ :

δ	0	1	\sqcup
q_{0}	$q_{0} 0 R$	$q_{1} 1 R$	-
q_{1}	-	-	-

1. Determine the (worst-case) time complexity $T(n)$ and the (worst-case) space complexity $S(n)$ of M.
2. Determine the average-case time complexity $\bar{T}(n)$ and the average-case space complexity $\bar{S}(n)$ of M. (Assume that all 2^{n} input words of length n occur with the same probability, i.e., $1 / 2^{n}$.)

Note: The summation sign may not be part of the answer and shall be replaced by a closed formula.

Problem 38. True or false?

1. $5 n^{2}+7=O\left(n^{2}\right)$
2. $5 n^{2}=O\left(n^{3}\right)$
3. $4 n+n \log n=O(n)$
4. $(n \log n+1024 \log n)^{2}=O\left(n^{2}(\log n)^{3}\right)$
5. $3^{n}=O\left(9^{n}\right)$
6. $9^{n}=O\left(3^{n}\right)$

Prove your answers based on the following definition.
Definition: For functions $f, g: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ we define

$$
g(n)=O(f(n)) \Longleftrightarrow \exists c \in \mathbb{R}_{>0}: \exists N \in \mathbb{N}: \forall n \geq N: g(n) \leq c \cdot f(n)
$$

Problem 39. Show by formal proof based on the definition of O-notation that for all functions $f, g, h: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ the following holds: If $f=O(g)$ and $g=O(h)$, then $f=O(h)$.

Problem 40. Prove or disprove the following:

1. $O(g(n))^{2}=O\left(g(n)^{2}\right)$
2. $2^{O(g(n))}=O\left(2^{g(n)}\right)$

Hint: First transform above equations into a form that does not involve the O-notation on the left hand side, then prove the correctness of the resulting formulas.

