Problems Solved:

31 | 32 | 33 | 34 | 35

Name:

Matrikel-Nr.:

Problem 31. Let Σ be an alphabet and A be a set $(A \subseteq \Sigma^*)$. Let also A be semi-decidable, but not decidable. Prove that the complement of A is not decidable.

Problem 32. Let M_0, M_1, M_2, \ldots be a list of all Turing machines with alphabet $\Sigma = \{0, 1\}$ such that the function $i \mapsto \langle M_i \rangle$ is computable. Let $w_i = 01^{i}0$ for all natural numbers *i*. Let $L = \{w_i \mid i \in \mathbb{N} \text{ and } M_i \text{ accepts } w_i\}$ and $\overline{L} = \Sigma^* \setminus L$.

- (a) Is L recursively enumerable?
- (b) Is \overline{L} recursively enumerable?
- (c) Is L recursive?
- (d) Is \overline{L} recursive?

Justify your answers.

Problem 33. Let *L* be a finite language over an alphabet $\{0, 1\}$. Is the following problem (with input $\langle M \rangle$)

For a Turing maschine M it holds $L(M) \supseteq L$.

in general semi-decidable? Is it also in general decidable?

Problem 34. Which of the following problems are decidable? In each problem below, the input of the problem is the code $\langle M \rangle$ of a Turing machine M with input alphabet $\{0, 1\}$.

- 1. Is L(M) empty?
- 2. Is L(M) finite?
- 3. Is L(M) regular?
- 4. Is $L(M) \subseteq \{0, 1\}^*$?
- 5. Is L(M) not recursively enumerable?
- 6. Does M have an even number of states?

Problem 35. Let M be a Turing maschine with the following property: If M accepts a word, then this is done in less than 1000 steps.

- 1. Is L(M) recursively enumerable?
- 2. Is L(M) recursive?
- 3. Is the property of L(M) to contain the empty word, decidable?
- 4. Is L(M) necessarily finite?

Berechenbarkeit und Komplexität, WS2014