Gruppe	Hemmecke (10:15)	Hemmecke $(11:00)$	Po	pov	
Name		Matrikel	SKZ		

Klausur 1 Berechenbarkeit und Komplexität ^{21. November 2014}

Part 1 NFSM2014

Let N be the nondeterministic finite state machine

 $(\left\{q_{0},q_{1},q_{2},q_{3},q_{4}\right\},\left\{0,1\right\},\nu,\left\{q_{0}\right\},\left\{q_{3},q_{4}\right\}),$

whose transition function ν is given below.

1 no	Is $0100100100101 \in L(N)$?
	A word $w \in L(N)$ with $ w > 1$ never ends with 01.
2 yes	Let N' be the NFSM that is constructed from N by solely reversing the arrow $q_3 \rightarrow q_2$ in the diagram above. Is $L(N')$ finite?
	$L(N') = \{0, 00, 11\}.$
3 yes	Does there exist a regular expression r such that $L(r) = \overline{L(N)} = \{0,1\}^* \setminus L(N)$?
	L(N) is regular and so is its complement.
4 no 5 yes 6 no	Let $L = \{ 1^n w \mid n \in \mathbb{N}, w \in L(N), n = w \}$. Is L a regular language? Is there an enumerator Turing machine G such that $Gen(G) = L(N)$? Let $M = (Q, \Gamma, \sqcup, \{0, 1\}, \delta, q, F)$ be a deterministic Turing machine such that $L(M) = L(N)$ and let $M' = (Q, \Gamma, \sqcup, \{0, 1\}, \delta, q, Q \setminus F)$. Can one conclude that M' halts on every word that is not in $L(N)$.
	$1 \notin L(N)$. Take a Turing machine M with $L(M) = L(N)$ that runs forever on the input 1, i.e., there is always a following configuration. So $1 \notin L(M)$. But for the same reason $1 \notin L(M')$.
7 yes	Is there a deterministic Turing machine $T = (Q, \Gamma, \sqcup, \{0, 1\}, \delta, q, F)$ with $L(T) = L(N)^*$?
	$L(N)$ is regular. Hence, $L(N)^*$ is regular, and thus also recursively enumerable.
8 yes	Let L be an arbitrary language that contains only finitely many words. For each Turing machine T, does there exist a deterministic finite state machine D such that $L(D) = L \cap L(T)$.
	Since L is finite, so is $L \cap L(T)$ and therefore, regular.

Part 2 | Computable2014

We know that there exists a Turing machine that enumerates the decimal expansion of π , i.e., that writes the infinite sequence 3 1 4 1 5 9 2 6 5 ... on its tape. Let $\varphi : \mathbb{N} \to \mathbb{N}$ be the function such that $\varphi(n)$ is the n^{th} digit in the decimal expansion of π . Let $\varrho : \mathbb{N} \times \mathbb{N} \to \{0,1\}$ be defined by

$$\varrho(n,m) = \begin{cases} 0, & \text{if } \varphi(n) = m, \\ 1, & \text{otherwise.} \end{cases}$$

9	yes	
10	yes	
11	yes	

Is φ Turing-computable?

Is ϱ Turing-computable? Is $\varphi(1000000)$ loop-computable?

12	no

writes into x0 this number. For every WHILE-program W, does there exist a Turing machine T that halts on every input such that W and T compute the same function?

Hint: a number is loop computable, if there exists a loop program that

Let f be the (partial) function that is only defined for even numbers, say, f(n) = n if $n \in \mathbb{N}$ even and f(n) is undefined for odd n. Let W be the WHILE-program that computes f. Since a Turing machine T that halts on every input computes a total function, it surely does not compute f.

13	yes	
14		no

Is every Turing-computable function also a μ -recursive function? Does there exist a μ -recursive function that is not WHILE computable?

Part 3 Pumping2014 Let

$$L_1 = \left\{ 0^{(n^2)} 1^n \, \middle| \, n \in \mathbb{N}, n < 98765 \right\} \subset \{0, 1\}^*,$$
$$L_2 = \left\{ 0^m 1^n \, \middle| \, m, n \in \mathbb{N}, m > n > 1 \right\} \subset \{0, 1\}^*.$$

15 yes] Is there a regular expression r such that $L(r) = \overline{L_1} := \{0,1\}^* \setminus L_1$?
	L_1 is regular, i.e., its complement $\overline{L_1}$ is also regular.
16 no] Is there a deterministic finite state machine M such that $L(M) = L_2$?
17 yes] Is there an enumerator Turing machine G such that $Gen(G) = L_1$?
18 yes] Is there an deterministic finite state machine D such that $L(D) = L_1 \cap L_2$?
	The language $L_1 \cap L_2$ is finite and thus regular.
19 yes	Are there two languages X_1 and X_2 that are not regular, but for which $X_1 \cup X_2$ is regular?
	Yes. Take $X_1 = L_2$ and $X_2 = \overline{L_2}$.

Part 4 WhileLoop2014

Let T_1 and T_2 be two Turing machines. Assume that T_1 and T_2 compute partial functions $t_1, t_2 : \mathbb{N} \to \mathbb{N}$, respectively, and that t_1 is a total function whereas t_2 is undefined for at least one input $i \in \mathbb{N}$. (We assume that a natural number n is encoded on the tape as a string of n letters 0.)

20	no	Can it be concluded that t_1 is LOOP-computable?
		The Ackermann function ack is a total function that is not primitive recursive. Hence, if T_1 is the Turing machine that computes $t_1(n) = \operatorname{ack}(n, n)$, then we can assume that T_1 holds on every input. However, since t_1 is not primitive recursive, there cannot be a corresponding LOOP-program.
21	yes	Is there a WHILE-program that computes t_2 ?
		Every Turing machine can be simulated by a WHILE-program.
22	yes	Is the composition $t_1 \circ t_2$ a μ -recursive function? Hint: $(t_1 \circ t_2)(x) = t_1(t_2(x))$.
23	yes	$Is \ every \ primitive \ recursive \ function \ computable \ by \ a \ LOOP\text{-}program?$

Part 5 | *Open2014* |

((2 points))Let $N = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite state machine with $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{0, 1\}, S = \{q_0\}, F = \{q_1, q_2\}, and transition function <math>\delta$ as given below.

1. Let X_i denote the regular expression for the language accepted by N when starting in state q_i .

Write down an equation system for X_0, \ldots, X_3 .

2. Give a regular expression r such that L(r) = L(N) (you may apply Arden's Lemma to the result of 1).

$$\begin{split} X_0 &= 1X_1 + (0+1)X_2 \\ X_1 &= 0X_2 + \varepsilon \\ X_2 &= 1X_3 + \varepsilon \\ X_3 &= 1X_1 \\ r &= 0 + 1 + (1 + (0+1)11)(011)^*(0 + \varepsilon) \end{split}$$