| Gruppe | Hemmecke (10:15) | Hemmecke (11:00) | Popov |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Name |  | Matrikel |  |  |  |  |  | SKZ |  |

# Klausur 1 <br> <br> Berechenbarkeit und Komplexität 

 <br> <br> Berechenbarkeit und Komplexität}
21. November 2014

## Part 1 NFSM2014

Let $N$ be the nondeterministic finite state machine

$$
\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\{0,1\}, \nu,\left\{q_{0}\right\},\left\{q_{3}, q_{4}\right\}\right),
$$

whose transition function $\nu$ is given below.


| $\mathbf{1}$ |  | no $\quad$ Is $0100100100101 \in L(N) ?$ |
| :--- | :--- | :--- | :--- |

A word $w \in L(N)$ with $|w|>1$ never ends with 01 .

2 yes $\quad$|  | Let $N^{\prime}$ be the NFSM that is constructed from $N$ by solely reversing the |
| :--- | :--- | arrow $q_{3} \rightarrow q_{2}$ in the diagram above. Is $L\left(N^{\prime}\right)$ finite?

$$
L\left(N^{\prime}\right)=\{0,00,11\} .
$$

| $\mathbf{3}$ | yes | Does there exist a regular expression $r$ such that $L(r)=\overline{L(N)}=\{0,1\}^{*} \backslash$ |
| :--- | :--- | :--- | $L(N)$ ?

$L(N)$ is regular and so is its complement.

| $\mathbf{4}$ |  | no |
| :--- | :--- | :--- |
| $\mathbf{5}$ | yes |  |
| $\mathbf{6}$ |  | no |

Let $L=\left\{1^{n} w|n \in \mathbb{N}, w \in L(N), n=|w|\}\right.$. Is $L$ a regular language?
Is there an enumerator Turing machine $G$ such that $\operatorname{Gen}(G)=L(N)$ ?
Let $M=(Q, \Gamma, \sqcup,\{0,1\}, \delta, q, F)$ be a deterministic Turing machine such that $L(M)=L(N)$ and let $M^{\prime}=(Q, \Gamma, \sqcup,\{0,1\}, \delta, q, Q \backslash F)$. Can one conclude that $M^{\prime}$ halts on every word that is not in $L(N)$.
$1 \notin L(N)$. Take a Turing machine $M$ with $L(M)=L(N)$ that runs forever on the input 1, i.e., there is always a following configuration. So $1 \notin L(M)$. But for the same reason $1 \notin L\left(M^{\prime}\right)$.
 $L(T)=L(N)^{*}$ ?
$L(N)$ is regular. Hence, $L(N)^{*}$ is regular, and thus also recursively enumerable.

Let $L$ be an arbitrary language that contains only finitely many words For each Turing machine $T$, does there exist a deterministic finite state machine $D$ such that $L(D)=L \cap L(T)$.

Since $L$ is finite, so is $L \cap L(T)$ and therefore, regular.

## Part 2 Computable2014

We know that there exists a Turing machine that enumerates the decimal expansion of $\pi$, i.e., that writes the infinite sequence $314159265 \ldots$ on its tape. Let $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ be the function such that $\varphi(n)$ is the $n^{\text {th }}$ digit in the decimal expansion of $\pi$. Let $\varrho: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}$ be defined by

$$
\varrho(n, m)= \begin{cases}0, & \text { if } \varphi(n)=m \\ 1, & \text { otherwise }\end{cases}
$$

| $\mathbf{9}$ | yes |  |
| :--- | :--- | :--- |
| $\mathbf{1 0}$ | yes |  |
| $\mathbf{1 1}$ | yes |  |

Is $\varphi$ Turing-computable?
Is $\varrho$ Turing-computable?
Is $\varphi(1000000)$ loop-computable?
Hint: a number is loop computable, if there exists a loop program that writes into x0 this number.

| 12 |  | no $\quad$ For every WHILE-program $W$, does there exist a Turing machine $T$ that |
| :--- | :--- | :--- | :--- | halts on every input such that $W$ and $T$ compute the same function?

Let $f$ be the (partial) function that is only defined for even numbers, say, $f(n)=n$ if $n \in \mathbb{N}$ even and $f(n)$ is undefined for odd $n$. Let $W$ be the WHILE-program that computes $f$. Since a Turing machine $T$ that halts on every input computes a total function, it surely does not compute $f$.


Is every Turing-computable function also a $\mu$-recursive function?
Does there exist a $\mu$-recursive function that is not WHILE computable?

Part 3 Pumping2014
Let

$$
\begin{aligned}
& L_{1}=\left\{0^{\left(n^{2}\right)} 1^{n} \mid n \in \mathbb{N}, n<98765\right\} \subset\{0,1\}^{*} \\
& L_{2}=\left\{0^{m} 1^{n} \mid m, n \in \mathbb{N}, m>n>1\right\} \subset\{0,1\}^{*}
\end{aligned}
$$


$L_{1}$ is regular, i.e., its complement $\overline{L_{1}}$ is also regular.

| 16 |  | no |
| :---: | :--- | :--- |
| $\mathbf{1 7}$ | yes |  |
| $\mathbf{1 8}$ | yes |  |

Is there a deterministic finite state machine $M$ such that $L(M)=L_{2}$ ?
Is there an enumerator Turing machine $G$ such that $\operatorname{Gen}(G)=L_{1}$ ?
Is there an deterministic finite state machine $D$ such that $L(D)=L_{1} \cap L_{2}$ ?
The language $L_{1} \cap L_{2}$ is finite and thus regular.

| $\mathbf{1 9}$ | yes | $\quad$ Are there two languages $X_{1}$ and $X_{2}$ that are not regular, but for which |
| :--- | :--- | :--- | $X_{1} \cup X_{2}$ is regular?

Yes. Take $X_{1}=L_{2}$ and $X_{2}=\overline{L_{2}}$.

Part 4 WhileLoop2014
Let $T_{1}$ and $T_{2}$ be two Turing machines. Assume that $T_{1}$ and $T_{2}$ compute partial functions $t_{1}, t_{2}: \mathbb{N} \rightarrow \mathbb{N}$, respectively, and that $t_{1}$ is a total function whereas $t_{2}$ is undefined for at least one input $i \in \mathbb{N}$. (We assume that a natural number $n$ is encoded on the tape as a string of $n$ letters 0.)

The Ackermann function ack is a total function that is not primitive recursive. Hence, if $T_{1}$ is the Turing machine that computes $t_{1}(n)=\operatorname{ack}(\mathrm{n}, \mathrm{n})$, then we can assume that $T_{1}$ holds on every input. However, since $t_{1}$ is not primitive recursive, there cannot be a corresponding LOOP-program.

| $\mathbf{2 1}$ | yes | Is there a WHILE-program that computes $t_{2}$ ? |
| :--- | :--- | :--- |

Every Turing machine can be simulated by a WHILE-program.
Is the composition $t_{1} \circ t_{2}$ a $\mu$-recursive function?
Hint: $\left(t_{1} \circ t_{2}\right)(x)=t_{1}\left(t_{2}(x)\right)$.
Is every primitive recursive function computable by a LOOP-program?
Part 5 Open2014
((2 points))
Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a nondeterministic finite state machine with $Q=$ $\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Sigma=\{0,1\}, S=\left\{q_{0}\right\}, F=\left\{q_{1}, q_{2}\right\}$, and transition function $\delta$ as given below.


1. Let $X_{i}$ denote the regular expression for the language accepted by $N$ when starting in state $q_{i}$.
Write down an equation system for $X_{0}, \ldots, X_{3}$.
2. Give a regular expression $r$ such that $L(r)=L(N)$ (you may apply Arden's Lemma to the result of 1 ).

$$
\begin{aligned}
X_{0} & =1 X_{1}+(0+1) X_{2} \\
X_{1} & =0 X_{2}+\varepsilon \\
X_{2} & =1 X_{3}+\varepsilon \\
X_{3} & =1 X_{1} \\
r & =0+1+(1+(0+1) 11)(011)^{*}(0+\varepsilon)
\end{aligned}
$$

