27

28

29

30

26

Problems Solved:

Name:

Matrikel-Nr.:

Problem 26. Let $f : \mathbb{N} \to \mathbb{N}$ be the (partial) function

$$f(x) = \min_{y} (x \le y^2)$$

- 1. Is $f \neq \mu$ -recursive function?
- 2. Is f a while computable function?
- 3. Is f a primitive recursive function?
- 4. Is f a loop computable?

In each case justify your answer. If it is *yes*, give a corresponding definition. Remark: When defining f, you are allowed to use the primitive recursive functions (respectively loop programs computing these functions)

$$m: \mathbb{N}^2 \to \mathbb{N}, \quad (x, y) \mapsto x \cdot y$$

and $u: \mathbb{N}^2 \to \mathbb{N}$,

$$u(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y. \end{cases}$$

Problem 27. Consider the following term rewriting system:

$$p(x, s(y)) \to p(s(x), y)$$
 (1)

$$p(x,0) \to x$$
 (2)

1. Show that

 $p(s(0), s(0)) \xrightarrow{*} s(s(0))$

by a suitable reduction sequence. For each reduction step, underline the subterm that you reduce, and indicate the reduction rule and the matching substitution σ used explicitly.

2. Disprove that

$$p(p(s(0), s(0)), p(s(0), s(0))) \xrightarrow{*} s(s(0)).$$

Problem 28. Define the following languages by context-free grammars over the alphabet $\Sigma = \{0, 1\}$.

- (a) $L_1 = \{ w \mid w \text{ contains at least two zeroes.} \}$
- (b) $L_2 = \{w \mid w \text{ starts and ends with one and the same symbol.} \}$
- (c) $L_3 = \{w \mid w \text{ consists of an odd number of symbols and the symbol in the center of } w \text{ is a } 0.\}$

Berechenbarkeit und Komplexität, WS2014

(d) $L_4 = L_2 \cap L_3$

Problem 29. Consider the grammar $G = (N, \Sigma, P, S)$ where $N = \{S\}, \Sigma = \{a, b\}, P = \{S \to \varepsilon, S \to aSbS\}.$

- (a) Is $aababb \in L(G)$?
- (b) Is $aabab \in L(G)$?
- (c) Does every element of L(G) contain the same number of occurrences of a and b?
- (d) Is L(G) regular?
- (e) Is L(G) recursive?

Justify your answers.

Problem 30. Construct a FSM recognizing L(G) where G is the grammar:

$$S \rightarrow aS|bA|b$$

 $A \rightarrow aA|bS|a$