## Problems Solved:

| 26 | 27 | 28 | 29 | 30 |
| :--- | :--- | :--- | :--- | :--- |

## Name:

## Matrikel-Nr.:

Problem 26. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be the (partial) function

$$
f(x)=\min _{y}\left(x \leq y^{2}\right)
$$

1. Is $f$ a $\mu$-recursive function?
2. Is $f$ a while computable function?
3. Is $f$ a primitive recursive function?
4. Is $f$ a loop computable?

In each case justify your answer. If it is yes, give a corresponding definition. Remark: When defining $f$, you are allowed to use the primitive recursive functions (respectively loop programs computing these functions)

$$
m: \mathbb{N}^{2} \rightarrow \mathbb{N}, \quad(x, y) \mapsto x \cdot y
$$

and $u: \mathbb{N}^{2} \rightarrow \mathbb{N}$,

$$
u(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

Problem 27. Consider the following term rewriting system:

$$
\begin{align*}
& p(x, s(y)) \rightarrow p(s(x), y)  \tag{1}\\
& p(x, 0) \rightarrow x \tag{2}
\end{align*}
$$

1. Show that

$$
p(s(0), s(0)) \xrightarrow{*} s(s(0))
$$

by a suitable reduction sequence. For each reduction step, underline the subterm that you reduce, and indicate the reduction rule and the matching substitution $\sigma$ used explicitly.
2. Disprove that

$$
p(p(s(0), s(0)), p(s(0), s(0))) \xrightarrow{*} s(s(0)) .
$$

Problem 28. Define the following languages by context-free grammars over the alphabet $\Sigma=\{0,1\}$.
(a) $L_{1}=\{w \mid w$ contains at least two zeroes. $\}$
(b) $L_{2}=\{w \mid w$ starts and ends with one and the same symbol. $\}$
(c) $L_{3}=\{w \mid w$ consists of an odd number of symbols and the symbol in the center of $w$ is a 0.$\}$
(d) $L_{4}=L_{2} \cap L_{3}$

Problem 29. Consider the grammar $G=(N, \Sigma, P, S)$ where $N=\{S\}, \Sigma=$ $\{a, b\}, P=\{S \rightarrow \varepsilon, S \rightarrow a S b S\}$.
(a) Is $a a b a b b \in L(G)$ ?
(b) Is $a a b a b \in L(G)$ ?
(c) Does every element of $L(G)$ contain the same number of occurrences of $a$ and $b$ ?
(d) Is $L(G)$ regular?
(e) Is $L(G)$ recursive?

Justify your answers.
Problem 30. Construct a FSM recognizing $L(G)$ where $G$ is the grammar:

$$
\begin{aligned}
& S \rightarrow a S|b A| b \\
& A \rightarrow a A|b S| a
\end{aligned}
$$

