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The Anti-Unification Problem

Given: Two terms t1 and t2.

Find: Their generalization, a term t such that both t1 and t2 are
instances of t under some substitutions.

t1 t2

t

σ1 σ2

tσ1 = = tσ2



The Anti-Unification Problem

Given: Two terms t1 and t2.

Find: Their generalization, a term t such that both t1 and t2 are
instances of t under some substitutions.

t1 t2

t

σ1 σ2

tσ1 = = tσ2



The Anti-Unification Problem

Given: Two terms t1 and t2.

Find: Their generalization, a term t such that both t1 and t2 are
instances of t under some substitutions.

t1 t2

t

σ1 σ2

tσ1 = = tσ2



The Anti-Unification Problem

Given: Two terms t1 and t2.

Find: Their generalization, a term t such that both t1 and t2 are
instances of t under some substitutions.

t1 t2

t

σ1 σ2

tσ1 = = tσ2



The Anti-Unification Problem

Given: Two terms t1 and t2.

Find: Their least general generalization t.

t

t1 t2

σ1 σ2

r

ρ

ρ1 ρ2



The Anti-Unification Problem

Given: Two terms t1 and t2.

Find: Their least general generalization t.

t

t1 t2

σ1 σ2
r

ρ

ρ1 ρ2



The Anti-Unification Problem

Given: Two terms t1 and t2.

Find: Their least general generalization t.

t

t1 t2

σ1 σ2
r

ρ

ρ1 ρ2



Anti-Unification: Example

f(g(a, h(h(b))), h(b)) f(g(b, h(u)), u)

f(g(a, h(h(b))), h(b)) f(g(b, h(u)), u)

f(g(x, h(y)), y)

{x 7→ a, y 7→ h(b)} {x 7→ b, y 7→ u}
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Anti-Unification and Weak Unification
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Anti-Unification: Origins

I Anti-unification was introduced in two papers:

Plotkin, G.D.: A note on inductive generalization. Mach.
Intell. 5(1), 153–163 (1970)

Reynolds, J.C.: Transformational systems and the algebraic
structure of atomic formulas. Mach. Intell. 5(1), 135–151
(1970)



Anti-Unification: Origins

Plotkin’s algorithm:



Anti-Unification: Origins

Reynolds’ algorithm:



Anti-Unification: Origins

I Reynolds coined the term “anti-unification”.

I Plotkin defined C1 ≤ C2 for “a clause C1 is more general than
a clause C2” iff there exists σ such that C1σ ⊆ C2.

I To justify this choice of notation, he writes:

We have chosen to write L1 ≤ L2 rather than L1 ≥ L2

as Reynolds (1970) does, because in the case of clauses,
‘≤’ is almost the same as ‘⊆’...



Anti-Unification: Origins

I Huet in 1976 formulated an algorithm in terms of recursive
equations:

Let φ be a bijection from a pair of terms to variables.
Define a function λ, which maps pairs of terms to terms:

1. λ(f(t1, . . . , tn), f(s1, . . . , sn)) = f(λ(t1, s1), . . . , λ(tn, sn)),
for any f .

2. λ(t, s) = φ(t, s) otherwise.
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Anti-Unification: Applications

I The original motivation of introducing anti-unification was its
application in automating induction.

I Since then, anti-unification has been used in reasoning by
analogy, machine learning, inductive logic programming,
software engineering, program synthesis, analysis,
transformation, ...

I Algorithms suitable for those applications have been
developed.



Software Code Clone Detection with Anti-Unification

I One of the interesting applications of anti-unification is in
software code clone detection.

I Clones are similar pieces of software code.

I Obtained by reusing code fragments.

I Quite a typical practice.



Why Should Clones Be Detected?

In general, they are harmful:

I Additional maintenance effort.

I Additional work for enhancing and adapting.

I Inconsistencies presenting fault.



Why Should Clones Be Detected?

Extraction of similar code fragments may be required for

I program understanding

I code quality analysis

I plagiarism detection

I copyright infringement investigation

I software evolution analysis

I code compaction

I bug detection



Classification

Roy, Cordy and Koschke (2009) distinguish four types of clones:

Type 1: Identical code fragments except for variations in
whitespace, layout and comments.

Type 2: Syntactically identical fragments except for variations in
identifiers, types, whitespace, layout and comments.

Type 3: Copied fragments with further modifications such as
changed, added or removed statements, in addition to
variations in identifiers, types, whitespace, layout and
comments.

Type 4: Two or more code fragments that perform the same
computation but are implemented by different syntactic
variants.

1–3: Syntactic clones.



Examples of Syntactic Clone Types

if (a >= b) { if (a >= b) {

c = d + b; // Comment1 c = d + b; d = d + 1;

d = d + 1;} }

else else

c = d - a; // Comment2 c = d - a

Type 1: Identical code fragments except for variations in
whitespace, layout and comments.



Examples of Syntactic Clone Types

if (a >= b) { if (m >= n)

c = d + b; // Comment1 { // Comment1’

d = d + 1;} y = x + n;

else x = x + 5; //Comment3

c = d - a; // Comment2 }

else

y = x - m; //Comment2’

Type 2: Syntactically identical fragments except for variations in
identifiers, types, whitespace, layout and comments.



Examples of Syntactic Clone Types

if (a >= b) { if (m >= n)

c = d + b; // Comment1 { // Comment1’

d = d + 1;} y = x + n;

else z = 1; // Added statement

c = d - a; // Comment2 x = x + 5; //Comment3

}

else

y = x - m; //Comment2’

Type 3: Copied fragments with further modifications such as
changed, added or removed statements, in addition to
variations in identifiers, types, whitespace, layout and
comments.



Generic Clone Detection Process

From Roy, Cordy, and Koschke (2009):

1. Preprocessing: Remove uninteresting code, determine source
and comparison units/granularities.

2. Transformation: Obtain an intermediate representation of the
preprocessed code.

3. Detection: Find similar source units in the transformed code.

4. Formatting: Clone locations of the transformed code are
mapped back to the original code.

5. Filtering: Clone extraction, visualization, and manual analysis
to filter out false positives.



Clone Detection and Anti-Unification

1. Tree-based approach.

2. Anti-unification is used in the detection step.

3. Anti-unification based tools:
I Breakaway (Cottrel at al, 2007)
I CloneDigger (Bulychev et al. 2009).
I Wrangler (Li and Thompson, 2010).
I HaRe (Brown and Thompson, 2010).

4. Achieve high precision.

5. Detect primarily clones of type 1 and 2.



Machine Learning and Anti-Unification

Example: An inductive learning method INDIE developed in
[Armengol & Plaza, 2000].

Given: A training set of positive and negative examples,
represented as feature terms.

Find: A description satisfied (subsumed) by all positive
examples and no negative example.

Method: Feature term anti-unification (for positive examples).



Anti-unification of Feature Terms

Example
Input:

P1 : person

 name
.
= N1 : name

[
first

.
= John

last
.
= Smith

]
lives-at

.
= A1 : address [city

.
= NYCity ]

father
.
= X1 : person [name

.
= Smith]



P2 : person

 name
.
= N2 : name [last

.
= Taylor ]

wife
.
= Y2 : person [name

.
= M2 : name [first

.
= Mary ]]

father
.
= X2 : person [name

.
= Taylor ]



Output:

P3 : person

[
name

.
= N3 : name [last

.
= family-name]

father
.
= X3 : person [name

.
= family-name]

]
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Analogy Making and Anti-Unification

Example: Generalization of recursive program schemes from given
structurally similar programs [Schmid, 2000].

Method: Restricted higher-order anti-unification.

Idea: Simple: abstract different heads of terms with a function
variable if the arities coincide. Otherwise abstract with a
term variable.

Example

Input:

I fac(x) = if(eq0(x), 1, *(x, fac(p(x)))

I sqr(y) = if(eq0(y), 0, +(+(y,p(y)), sqr(p(y)))

Generalization

I X(z) = if(eq0(z), Y, Z(u, X(p(z)))



Analogy Making and Anti-Unification

Example: Replay of program derivations [Hasker, 1995].

Given: Formal program specification together with a program
fulfilling this specification, both connected by a
derivation.

Assume: The specification has been slightly rewritten.

Goal: Instead of fully deriving a new program, alter the
existing derivation and implementation along the
changes of specification.

Method: Use higher-order anti-unification for combinator terms to
detect changes and similarities between the old and the
new specification, changes which can be propagated by
adjusting the existing derivation.



Symbolic Computation and Anti-Unification

Example: Abstracting symbolic matrices [Almomen, Sexton,
Sorge 2012]

Given: A concrete symbolic matrix.

Goal: Obtain a more compact representation employing ellipses
in order to expose homogeneous regions present in the
matrix.

Method: Use a version of first-order anti-unification with a special
treatment of integer constants.



Program Analysis and Anti-Unification

Example: Invariant computation [Bulychev, Kostylev,
Zakharov 2010]

Given: A program represented as a set assignment statements
(with input and output points labeled by natural
numbers), and a program point labeled by l.

Find: Most specific invariant at point l. An invariant at l is a
(existentially closed equational) formula which holds for
any run at point l.

Method: Based on anti-unification of substitutions. Compute an
lgg of substitutions induced by sequences of variable
assignments in runs.



Linguistics and Anti-Unification

Example: Modeling metaphoric expressions [Gust, Kühnberger,
Schmid 2006]

Given: A metaphor as e.g., in “Electrons are the planets of the
atom”.

Find: Its formal representation.

Method: Using heuristic-driven theory projection, which is based
on anti-unification.



More . . .

I Relative lgg [Plotkin 1971] taking into account background
knowledge.

I Anti-unification in the Calculus of Constructions
[Pfenning 1991] aiming at proof generalizations.

I Anti-unification for relaxed patterns [Feng and Muggleton
1992] for inductive logic programming.

I Generalization under implication (special forms)
[Idestam-Almquist 1995, Nienhuys-Cheng & de Wolf 1996] for
inductive logic programming.



More . . .

I Anti-unification in λ2 [Lu et al. 2000] for reusing proofs about
programs.

I Anti-unification for simple unranked hedges [Yamamoto et al
2001] for inductive reasoning about hedge logic programs.

I Second-order generalization [Chiba, Aoto, Toyama 2008] for
automatic construction of program transformatione templates.

I Variations of restricted higher-order anti-unification [Bobere &
Besold 2012] in analogy-making.

I Anti-unification for relational rules [de Souza Alcantara et al.
2012] for learning custom gestures.



More . . .

I Order-sorted feature term generalization
[Äıt-Kaci, Sasaki 1983]

I AC anti-unification [Pottier 1989].

I Anti-unification in commutative theories [Baader 1991].

I Variants of second order anti-unification [Hirata, Ogawa,
Harao 2004].

I Word anti-unification [Biere 1993, Ciceckli & Ciceckli 2006].

I Constrained anti-unification [Page 1993].

I E-generalizations using regular tree grammars
[Burghardt 2005].

I Equational and order-sorted anti-unification
[Alpuente et al, 2008, 2009, 2013].



More . . .

I Anti-unification for unranked terms
[Kutsia, Levy, Villaret 2011].

I Pattern anti-unification for simply-typed λ-calculus
[Baumgartner et al. 2013].

I Restricted second-order unranked anti-unification
[Baumgartner, Kutsia 2014].

I Nominal anti-unification
[Baumgartner et al. 2014].
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Anti-Unification Library

http://www.risc.jku.at/projects/stout/

Contains Java implementation of the following algorithms:

I first-order rigid unranked anti-unification,

I second-order unranked anti-unification,
I higher-order (pattern) anti-unification and

I its subalgorithm for deciding α-equivalence,

I nominal anti-unification and
I its subalgorithm for deciding equivariance.

http://www.risc.jku.at/projects/stout/


First-order Rigid Unranked Anti-Unification

I Given two sequences f1(s̃1), . . . , fn(s̃n) and
g1(r̃1), . . . , gm(r̃m).

I Take a common subsequence of f1, . . . , fn and g1, . . . , gm.

I Let it be h1, . . . , hk.

I Then a rigid generalization of the given sequences has a form

X1, h1(q̃1), X2, h2(q̃2), . . . , Xk−1, hk(q̃k), Xk,

where
I X’s are (not necessarily distinct) new sequence variables,
I Some X’s can be omitted,
I if hi = fj = gl, then q̃i is a rigid generalization of s̃j and r̃l.

I The algorithm is parametrized by a rigidity function.
It decides which common subsequences are taken.



Second-Order Unranked Anti-Unification

I In first-order rigid anti-unification, the computed lggs do not
reflect similarities that are located under distinct heads or at
different depths.

I First order lgg of f(a, b) and g(h(a, b)) is just a variable,
despite the fact that the terms share a and b.

I Second order Unranked Anti-Unification addresses this
problem.

I For f(a, b) and g(h(a, b)), it will return X(a, b), where X is a
higher-order (context) variable.
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Second-Order Unranked Anti-Unification

The idea:

I Take the input term sequences and first construct a
“skeleton” of a their generalization.

I The “skeleton” corresponds to a sequence embedded into
each of the input sequence.

I Next, insert context and/or hedge variables into the skeleton,
to uniformly generalize (vertical and horizontal) differences
between the input sequences.

I The skeleton computation function is the parameter of the
algorithm.



Second-Order Unranked Anti-Unification



Anti-Unification for Simply-Typed Lambda Terms

Given: Higher-order terms t1 and t2 of the same type in η-long
β-normal form.

Find: A least general higher-order pattern generalization of t1 and
t2.

Higher-order pattern (HOP):

I a λ-term, in which, when written in η-long β-normal form, all
free variables apply to pairwise distinct bound variables.

I Patterns: λx.f(X(x), Y ), f(c, λx.x), λx, y.X(λz.x(z), y).

I Non-patterns: λx.f(X(X(x)), Y ), f(X(c), c), λx, y.X(x, x).
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Deciding α-Equivalence

I Higher-order pattern anti-unification requires to decide
α-equivalence constructively.

I The corresponding algorithm: Given two terms, if they are
α-equivalent, the algorithm returns the justifying renaming of
bound variables. Otherwise, it fails.



Nominal Anti-Unification

I Nominal terms contain variables, atoms, and function
symbols.

I Variables can be instantiated and atoms can be bound.

I A swapping (a b) is a pair of atoms.

I A permutation π is a sequence of swappings.

I Nominal terms:

t ::= f(t1, . . . , tn) | a | a.t | π ·X



Nominal Anti-Unification

I Permutation can apply to terms and cause swapping the
names of atoms.

I (c b)(a b) · f(c, b.g(a, b), X) = f(b, a.g(c, a), (c b)(a b) ·X).

I Freshness constraint: a#X

I The instantiation of X cannot contain free occurrences of a.

I Freshness context: a finite set of freshness constraints.
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Nominal Anti-Unification

I Term-in-context: a pair 〈∇, t〉 of a freshness context ∇ and a
term t.

I A term-in-context 〈∇, t〉 is based on a set of atoms A, if all
the atoms in t and ∇ are elements of A.

I For instance, 〈{b#X}, f(X, (a b) ·X)〉 is based on {a, b} and
on {a, b, c}, but not on {a, c}.

I There is a subsumption order defined on terms-in-context.
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Nominal Anti-Unification Problem

Given: Two nominal terms t1 and t2, a freshness context ∇, and a
finite set of atoms A such that 〈∇, t1〉 and 〈∇, t2〉 are
based on A.

Find: A term-in-context 〈Γ, t〉 which is also based on A, such that
〈Γ, t〉 is a least general generalization of 〈∇, t1〉 and 〈∇, t2〉.
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