Problems Solved:

11	12	13	14	15

Name:

Matrikel-Nr.:

Problem 11. Answer the following questions.
(a) Is the language $L=\left\{0^{m} 1^{n} \mid m, n \in \mathbb{N}\right\}$ regular?
(b) Is the language $L=\left\{0^{n} 1^{n} \mid n \in \mathbb{N}\right\}$ regular?
(c) Is every subset of a regular language again a regular language?

Problem 12. Let M_{1} be the DFSM with states $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$ whose transition graph is given below. Determine a regular expression r such that $L(r)=L\left(M_{1}\right)$. Show the derivation of the the final result by the technique based on Arden's Lemma (see lecture notes).

Problem 13. Let r be the following regular expression.

$$
a \cdot a \cdot(b \cdot a)^{*} \cdot b \cdot b^{*}
$$

Construct a nondeterministic finite state machine N such that $L(N)=L(r)$. Show the derivation of the result by following the technique presented in the proof of the theorem Equivalence of Regular Expressions and Automata (see lecture notes).

Problem 14. Let L be the language of properly nested strings over the alphabet $\Sigma=\{[],, \circ\}$. A word w is properly nested if it contains as many opening as closing brackets and every prefix of w contains at least as many opening brackets [as closing]. (Example: oo [] [o[o]] is properly nested, but oo] [is not.) Show by means of the Pumping Lemma that L is not regular.

Problem 15. Write down explicitly a Turing machine M over $\Sigma=\{0\}$ which computes the function $d: \mathbb{N} \rightarrow \mathbb{N}$ given by $d(n)=2 n$.
Use unary representation: A number n is represented by the string 0^{n} consisting of n copies of the symbol 0 .

