Problems Solved:

Name:

Matrikel-Nr.:

Problem 6. Let L be the set of all strings $x \in\{a, b\}^{*}$ with $|x| \geq 3$ whose third symbol from the right is b. For example, babaa and $b b b$ Elemente von L, but $b b$ and baba are not.

1. Construct a NFSM N such that $L(N)=L$. (4 states are sufficient.)
2. Construct a DFSM D such that $L(D)=L$. (8 states are sufficient.)

Problem 7. Construct a nondeterministic finite state machine for:

1. the language L_{1} of all strings over $\{0,1\}$ that contain 001 as a substring.
2. the language L_{2} of all strings over $\{0,1\}$ that contain the letters $0,0,1$ in exactly that order. (Note that before, in between and after these three letters any number of other letters may occur).

Your two machines must not use more than 4 states. Moreover, they should only differ in their transition functions. Draw their transition graphs.

Problem 8. Let $N=(Q, \Sigma, \delta, S, F)$ be the NFSM given by $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$, $\Sigma=\{0,1\}, S=\left\{q_{0}\right\}, F=\left\{q_{1}, q_{2}\right\}$, and the transition function $\delta: Q \times \Sigma \rightarrow P(\Sigma)$ where $\delta\left(q_{0}, 0\right)=\left\{q_{0}, q_{1}\right\}, \delta\left(q_{0}, 1\right)=\left\{q_{0}, q_{2}\right\}$, and $\delta(q, \sigma)=\emptyset$ for $q \in\left\{q_{1}, q_{2}\right\}$ and all $\sigma \in \Sigma$. Construct a DFSM D such that $L(N)=L(D)$. Hint: Use the Subset Construction, cf. Section 2.2 in the lecture notes.

Problem 9. Let the DFSM $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be given by $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$, $\Sigma=\{0,1\}, F=\left\{q_{1}, q_{2}\right\}$ and the following transition function $\delta: Q \times \Sigma \rightarrow Q$:

Construct a minimal DFSM D such that $L(M)=L(D)$ using Algorithm Minimize. (cf. Section 2.3 Minimization of Finite State Machines)

Problem 10. Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be two DFSM over the alphabet Σ. Let $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$ be the languages accepted by M_{1} and M_{2}, respectively.
Construct a DFSM $M=(Q, \Sigma, \delta, q, F)$ whose language $L(M)$ is the intersection of $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$. Write down Q, δ, q, and F explicitly.
Hint: M simulates the parallel execution of M_{1} and M_{2}. For that to work, M "remembers" in its state the state M_{1} as well as the state of M_{2}. This can be achieved by defining $Q=Q_{1} \times Q_{2}$.
Demonstrate your construction with the following DFSMs.

