Problems Solved:

6 7 8 9 10

Name:

Matrikel-Nr.:

Problem 6. Let *L* be the set of all strings $x \in \{a, b\}^*$ with $|x| \ge 3$ whose third symbol from the right is *b*. For example, *babaa* and *bbb* Elemente von *L*, but *bb* and *baba* are not.

- 1. Construct a NFSM N such that L(N) = L. (4 states are sufficient.)
- 2. Construct a DFSM D such that L(D) = L. (8 states are sufficient.)

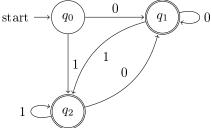
Problem 7. Construct a nondeterministic finite state machine for:

- 1. the language L_1 of all strings over $\{0,1\}$ that contain 001 as a substring.
- 2. the language L_2 of all strings over $\{0, 1\}$ that contain the letters 0, 0, 1 in exactly that order. (Note that before, in between and after these three letters any number of other letters may occur).

Your two machines must not use more than 4 states. Moreover, they should only differ in their transition functions. Draw their transition graphs.

Problem 8. Let $N = (Q, \Sigma, \delta, S, F)$ be the NFSM given by $Q = \{q_0, q_1, q_2\}$, $\Sigma = \{0, 1\}, S = \{q_0\}, F = \{q_1, q_2\}$, and the transition function $\delta : Q \times \Sigma \to P(\Sigma)$ where $\delta(q_0, 0) = \{q_0, q_1\}, \delta(q_0, 1) = \{q_0, q_2\}$, and $\delta(q, \sigma) = \emptyset$ for $q \in \{q_1, q_2\}$ and all $\sigma \in \Sigma$. Construct a DFSM D such that L(N) = L(D). Hint: Use the Subset Construction, cf. Section 2.2 in the lecture notes.

Problem 9. Let the DFSM $M = (Q, \Sigma, \delta, q_0, F)$ be given by $Q = \{q_0, q_1, q_2\}$, $\Sigma = \{0, 1\}, F = \{q_1, q_2\}$ and the following transition function $\delta : Q \times \Sigma \to Q$:



Construct a minimal DFSM D such that L(M) = L(D) using Algorithm MINI-MIZE. (cf. Section 2.3 Minimization of Finite State Machines)

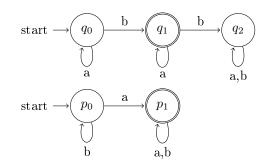
Problem 10. Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be two DFSM over the alphabet Σ . Let $L(M_1)$ and $L(M_2)$ be the languages accepted by M_1 and M_2 , respectively.

Construct a DFSM $M = (Q, \Sigma, \delta, q, F)$ whose language L(M) is the intersection of $L(M_1)$ and $L(M_2)$. Write down Q, δ, q , and F explicitly.

Hint: M simulates the parallel execution of M_1 and M_2 . For that to work, M "remembers" in its state the state M_1 as well as the state of M_2 . This can be achieved by defining $Q = Q_1 \times Q_2$.

Demonstrate your construction with the following DFSMs.

Berechenbarkeit und Komplexität, WS2014



Berechenbarkeit und Komplexität, WS2014