Problems Solved:

1	2	3	4	5

Name:

Matrikel-Nr.:

Problem 1. Show by induction that for all real numbers $a \notin\{0,1,-1\}$ the following holds:

$$
\forall n \in \mathbb{N}: \quad \sum_{k=0}^{n} a^{2 k}=\frac{a^{2 n+2}-1}{a^{2}-1}
$$

Problem 2. Let $L \subseteq \Sigma^{*}$ be a language over the alphabet $\Sigma=\{a, b, c, d\}$ such that a word w is in L if and only if it is either a or b or of the form $w=d u c v d$ where u and v are words of L. For example, dacad, ddacbdcad, $d d d b c b d c d b c b d d c a d$ are words in L. Show by induction that every word of L contains an even number of the letter d.
Note that a language is just a set of words and a word is simply a finite sequence of letters from the alphabet.

Problem 3. Show $\sqrt[3]{5} \notin \mathbb{Q}$ by an indirect proof.
Hint: http://en.wikipedia.org/wiki/Square_root_of_2\#Proofs_of_irrationality.
Problem 4. Let L be the lanugage over $\{0,1\}$ that consists of binary representations of non-negative multiples of 3 . The set L is such that if $w \in L$ then also $0 w \in L$, in other words, leading zeroes in representations are OK. For example, $0,00,11,001001$ are in L, but 1,010 are not.
Construct a deterministic finite-state machine $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ over the alphabet $\{0,1\}$ such that $L=L(M)$. Draw the transition graph of M.
Hint: For a word $w \in L$, let $V(w)$ be the number corresponding to the binary representation given by the word w. Let the states of M correspond to $V(w)$ $\bmod 3$ and note that $V(\varepsilon)=0, V(w 0)=2 V(w)$ and $V(w 1)=2 V(w)+1$.

Problem 5. Construct a deterministic finite state machine M over $\Sigma=\{0,1\}$ such that $L(M)$ consists of all words that do not contain the string 01. Hint: Start by constructing a nondeterministic finite state machine N that recogizes the words that do contain the string 01 . Proceed by converting your nondeterministic machine N to a deterministic machine D that accepts the same language. Now you are left with the task of coming up with a machine M whose language is precisely the complement of the language of D. This can be done by a small modification of D.

