Praktische Softwaretechnologie

Java 1.1 Event Model

I Karoly.Bosa@ jku.at

Events represent the actions that the user performs
AWT package: java.awt.event
Components produce events in response to user interaction
Events can be intercepted by event listeners (implementations of interface
EventListener)
Listeners have to "register" to specific events in order to receive them.
There are many different types of events (and corresponding listeners):
0 ActionEvent ActionlListener

O DMouseEvent Mousel.istener
0o WindowEvent WindowListener

o KeyEvent KeyListener

o)

A listeners that wants to receive the events of a particular component, has
to be added to this component's listeners
Events are instances of AWTEvent

26

AWTEvent Class

I Karoly.Bosa@ jku.at

e Superclass of all types of events
Constructor:
AWTEvent (Object source, int id)

Creates a new event. source is a reference to the object that
initiated the event. id is an integer that represents the type of the event. This
constructor is rarely used since events are generated automatically.

Important instance methods:
int getID()
Returns the ID of the event which represents the event type.

Object getSource ()
Returns a reference to the object that initiated the event.

volid consume ()
When an event is consumed, it is not sent to the peer object.

27

Events Example

I Karoly.Bosa@ jku.at
e Frame with 1 button and 1 label
e \When the button is pressed, the label should display "OK"
e Two parts: Frame code and Event handling code
e Event handling code needs to have a reference to the label
e \When button is pressed it produces an ActionEvent

class MyListener implements ActionListener ({

Label 1; =T
public MyListener (Label 1) {
this.l = 1; |___ Bulion {
}
public void actionPerformed (ActionEvent e) {
1l.setText ("OK") ;
} 1
}
Label 1 = new Label ("", Label.CENTER) ; i Button §
1l.setBackground (Color.YELLOW) ; OK
Button b = new Button ("Button");

b.addActionListener (new MyListener(l)):;
add (b) ;
add (1) ;

28

ActionListener and ActionEvent

I Karoly.Bosa@ jku.at

ActionListener interface Must be implemented by classes that want to
handle ActionEvents
Contains only one method signature:
O public void actionPerformed (ActionEvent e);
This method is invoked automatically when the button to which the listener
is attached is pressed.
The event-handling code should be written inside this method.
The method receives an ActionEvent instance, which can be used to get
more information about the event.
ActionEvent is a subclass of AWTEvent
Important instance methods of ActionEvent:
Object getSource()
Returns a reference to the component that initiated the event.
String getActionCommand ()
The command associated with the object that initiated the event.

29

WindowListener Interface

Karoly.Bosa@ jku.at

A listener interface for responding to window events such as:
o Window opened, closing, closed, iconified, ...
Defined as follows:

public interface WindowListener extends EventListener ({

public
public
public
public
public
public
public

void
void
void
void
void
void
void

windowActivated (WindowEvent e) ;
windowClosed (WindowEvent e);
windowClosing (WindowEvent e);
windowDeactivated (WindowEvent e);
windowDeiconified (WindowEvent e);
windowIconified (WindowEvent e);
windowOpened (WindowEvent e);

A WindowListener implementation must implement all the methods.
A window listener is added to a Frame using the method:
0 Frame.addWindowListener (WindowListener 1)

30

WindowListener Example

I Karoly.Bosa@ jku.at

e Create a blank Frame that exits the program when the close button is
pressed.

e Without a WindowListener, the close button is unresponsive.
e \When the close button is pressed, the method windowClosing () is
invoked.

import java.awt.event.*;

class ExitListener implements WindowListener {
public void windowClosing (WindowEvent e) ({

System.exit (0);

}
public void windowActivated (WindowEvent e) { }
public void windowClosed (WindowEvent e) { }
public void windowDeactivated (WindowEvent e) { }
public void windowDeiconified (WindowEvent e) { }
public void windowIconified (WindowEvent e) { }
public void windowOpened (WindowEvent e) { }

e In order to implement the interface, all interface methods have to
implemented, even the unused ones.

31

WindowListener Example (continued)

I Karoly.Bosa@ jku.at

e The listener needs to be attached to a Frame using the method:
0 volid addWindowListener (WindowListener 1)

import java.awt.*;
import java.awt.event.*;

public class BlankFrame extends Frame { 2 Blank Frame E@g

public BlankFrame () {
super ("Blank Frame") ;
setSize (220,200);
addWindowListener (new ExitListener()):;
setVisible (true) ;

}

public static void main (String[] args) {
new BlankFrame () ;

}

32

MouseListener Interface

I Karoly.Bosa@ jku.at

e |nterface for listeners that handle mouse events
e Defined as follows:

public interface MouseListener extends EventListener

public void mouseClicked (MouseEvent e);
public void mouseEntered (MouseEvent e);
public void mouseExited (MouseEvent e);
public void mousePressed (MouseEvent e);
public void mouseReleased (MouseEvent e);

33

Adapters

I Karoly.Bosa@ jku.at

e Many listener interfaces, such as WindowListener and
Mouselistener, declare a large number of methods.
In many cases, only one (or a few) of these methods is needed.
But a class that implements an interface must implement its methods.
Lots of redundant code
Solution: Adapters

o Abstract classes that implement all the methods of an interface.
e Example: MouseAdapter

public abstract class MouseAdapter
implements MouseListener, MouseWheelListener, MouseMotionListener ({

public void mouseClicked (MouseEvent e) { }
public void mouseEntered (MouseEvent e) { }
public void mouseExited (MouseEvent e) { }
public void mousePressed (MouseEvent e) { }
public void mouseReleased (MouseEvent e) { }
void mouseDragged (MouseEvent e) { }

void mouseMoved (MouseEvent e) { }

void mouseWheelMoved (MouseWheelEvent e) { }

34

Adapters (continued)

I Karoly.Bosa@ jku.at

e Instead of implementing the listener, extend the adapter

e Override the needed methods, other methods need not be reimplemented
e Example:

Listener class:

import java.awt.event.*;
public class ConciseMouselListener extends MouseAdapter {
public void mousePressed (MouseEvent e)
System.out.println ("The mouse was pressed: " + e);

i

Adding the listener:

import java.awt.*;

Button b = new Button|():
b.addMouselistener (new ConciseMouselListener()):;

35

Event Class Hierarchy

I Karoly.Bosa@ jku.at

e AWTEvent
o ActionEvent
o AdjustmentEvent
o ComponentEvent
m ContainerEvent
m FocusEvent
m [nputEvent
e KeyEvent
e MouseEvent
m PaintEvent
m \WindowEvent
o |temEvent
o TextEvent

36

Listener Class Hierarchy

Karoly.Bosa@ jku.at

e EventListener

@)

o) (@ (o (@ (@ [© © (@ (O

ActionListener
AdjustmentListener
ComponentListener
ContainerListener
FocusListener
ltemListener
KeyListener
MouselListener
MouseMotionListener
TextListener
WindowListener

37

Java Applets

I Karoly.Bosa@ jku.at

e Small Java programs that can be embedded in an HTML page
e Defined as a class that extends java.applet.Applet.
e Appletis a subclass of java.awt.Panel (inherits all the methods of
Panel)
e Class hierarchy of Applet:
java.lang.Object
« java.awt.Component
. Jjava.awt.Container
o java.awt.Panel
m java.applet.Applet

38

Developing Applets

I Karoly.Bosa@ jku.at

Create a subclass of Applet
Instead of constructor, override the method void init () with the
initialization code.
If needed, override the method void start () with code that should be
executed when the applet "plays".
An applet can be treated as a normal panel.
o Layout can be assigned
o Components (or other containers) can be added and removed
o Listeners can be attached to the components
o etc.
Extra classes can be created, which are used by the applet
o E.g.: Listeners, other panels or back-end classes
o Classpath includes Java Standard library and the folder or package of
the applet

39

Embedding Applets in HTML

I Karoly.Bosa@ jku.at

Applets are embedded in HTML pages using the <applet> tag.
The applet tag can take the following parameters:
o code: URL of the .class file containing the Applet class
o width and height: specify the dimensions of the applet
o archive: Optionally, the URL of a JAR file containing the applet
classes. If archive is specified, then code is the name of the main
class file.

Example without archive:

<applet code="/path/to/binary/MyRApplet.class" width="150" height="
100">

</appet>

Example with archive:

<applet code="MyApplet.class" archive="/path/to/archive.jar"
width="150" height="100">
</appet>

40

Parameterizing Applets

I Karoly.Bosa@ jku.at

HTML code can pass runtime parameters to the applet
This allows the applet to be customized without having to rewrite code.
Parameters are passed inside the <applet> tag using <param> tags.
The <param> tag has only two parameters:

o name: the name of the parameter, and

o value: the value of the parameter
Both parameters are treated as Strings
Applet accesses paramters using the method:

© String getParameter (String name)

m Returns the parameter value with the given name, or null

Example:

<applet code="MyApplet.class" width="150" height="100">

<param name="greeting" wvalue="Hello" />
<param name="adressee" value="World" />

</applet>

getParameter ("greeting") -> "Hello"

41

Applets Example

I Karoly.Bosa@ jku.at

An applet with a button and a label

Takes 2 parameters: person1, person2

Label initially displays "Hello, <person1>"

When button is pressed, toggles between person1 and person2

import java.applet.*;

import java.awt.*; -
import java.awt.event.*; § Toggle
public class GreetingARpplet extends Applet :

implements ActionListener ({

Hello, John
boolean flag;
Label 1;
String personl, person2; t
public void toggleGreeting() { - -
aNs e ke (el Nio R (Sl g agRpersonilperson2)he i Toggle 4
flag = !flag; - :
} Hello, Smith

public void actionPerformed(ActionEvent e) {
toggleGreeting () ;

}

42

Applets Example (Continued)

I Karoly.Bosa@ jku.at

public void init() {
flag = true;
personl = getParameter ("personl");
personZ2 = getParameter ("person2");
setLayout (new GridLayout(2,1)):
1l = new Label ("", Label.CENTER) ;
1.setBackground (Color.YELLOW) ;

toggleGreeting () ; § Toggle ‘
Button b = new Button ("Toggle"); :
b.addActionListener (this); Hello. John
add (b) ;
add (1) ;
}
}
Applet HTML tag Toggle ‘
<applet code="GreetingApplet.class" width="100" height="70" Hello, Smith

>
<param name="personl" value="John" />
<param name="person2" value="Smith" />
</appiet>

43

Security Restrictions

I Karoly.Bosa@ jku.at

By default, applets are loaded in "Sandbox" mode
This mode offers a number of restrictions of what the applet can do.
In sandbox mode, an applet:
o cannot access client resources, e.g. file system, executables,
o cannot contact a 3rd party server (however, it may contact the server
from which it originated)
o cannot load native libraries
o can only read secure system properties, all other properties are
forbidden
Applets can request to run in privileged mode only if they are signed.
In privileged mode, none of these restrictions apply.

44

