
Praktische
Softwaretechnologie

Károly Bósa

(Karoly.Bosa@jku.at)

Research Institute for Symbolic Computation

(RISC)

Lecture 8.

Arrays vs. Collections
Karoly.Bosa@jku.at

•Arrays are defined to be fixed-size collections of the same

datatype They are the only collection that supports storing
primitive data types.

•A collection — sometimes called a container — is simply an

object that groups multiple elements into a single unit. It never
has a pre-defined size.

What Is a Collections Framework?
Karoly.Bosa@jku.at

All collections frameworks contain the following:

• Interfaces: These are abstract data types that represent

collections. Interfaces allow collections to be manipulated

independently of the details of their representation.

• Implementations: These are the concrete implementations

of the collection interfaces. In essence, they are reusable

data structures.

• Algorithms: These are the methods that perform useful

computations, such as searching and sorting, on objects

that implement collection interfaces (see class Collections).

An example for a similar structure in C++ is the Standard

Template Library (STL)

Advantages of the Collections
Karoly.Bosa@jku.at

• Reduces programming effort: By providing useful data structures and algorithms,

the Collections Framework frees you to concentrate on the important parts of your

program rather than on the low-level data structures.

• Increases program speed and quality: This Collections Framework provides high-

performance, high-quality implementations of useful data structures and algorithms.

• Allows interoperability: Different implementations use the same interfaces

• software reusablity: New data structures that conform to the standard collection

interfaces are by nature reusable. The same goes for new algorithms that operate on

objects that implement these interfaces.

The core collection interfaces
Karoly.Bosa@jku.at

• Collection — the root of the collection hierarchy. A collection represents a group

of objects known as its elements. The Java platform doesn't provide any
direct implementations of this interface.

• Set — a collection that cannot contain duplicate elements.

• List — an ordered collection (sometimes called a sequence). Lists can contain

duplicate elements. (dynamically resizable array).

• Queue — a collection used to hold multiple elements prior to processing.

Queues typically, but do not necessarily, order elements in a FIFO (first-in, first-

out) manner.

• Map — an object that maps keys to values. A Map cannot contain duplicate

keys; each key can map to at most one value (abstraction of functions).

The core collection interfaces
Karoly.Bosa@jku.at

• Note that all the core collection interfaces are generic.

public interface Collection<E>...

public interface Map<K, V> …

• Java provides different kind of implementations for these interfaces (usually more
than one for each), except the Collection interface.

• Conversion between collection objects via their constructors, e.g.:

List<String> list = new ArrayList<String>(c);

Where ArrayList is an implementation of List interface, whose one of

constructors expects any kind of object as arguments which implements the

collection interface(this means c can be TreeSet, LinkedList, etc).

The core collection interfaces
Karoly.Bosa@jku.at

• Note that all the core collection interfaces are generic.

public interface Collection<E>...

public interface Map<K, V> …

• Java provides different kind of implementations for these interfaces (usually more
than one for each), except the Collection interface.

• Conversion between collection objects via their constructors, e.g.:

List<String> list = new ArrayList<String>(c);

Where ArrayList is an implementation of List interface, whose one of

constructors expects any kind of object as arguments which implements the

collection interface(this means c can be TreeSet, LinkedList, etc).

The Collection Interface
Karoly.Bosa@jku.at

• A Collection represents a group of objects

• Java platform doesn't provide any direct implementations

of this interface.

• It is used to pass around collections of objects where

maximum generality is desired.

The Collection Interface
Karoly.Bosa@jku.at

public interface Collection<E> extends Iterable<E> {

// Basic operations

int size();
boolean isEmpty();
boolean contains(Object element);
boolean add(E element);
boolean remove(Object element);
Iterator<E> iterator();

// Bulk operations

boolean containsAll(Collection<?> c);
boolean addAll(Collection<?> c);
boolean removeAll(Collection<?> c);
boolean retainAll(Collection<?> c);
void clear();

// Array operations

Object[] toArray();
<T> T[] toArray(T[] a);

}

Ranging Over Collections
Karoly.Bosa@jku.at

There are two ways to traverse collections:

• For-each construct (it cannot modify collections):

for (Object o : collection)

System.out.println(o);

• Iterators is an object that enables you to traverse

through a collection and to remove elements from the

collection selectively. The following is the Iterator

interface:

public interface Iterator<E> {

boolean hasNext();

E next();

void remove();

}

How to Use foreach – Sorting Arguments
Karoly.Bosa@jku.at

Returning with the words of the command line (without
duplication)

How to Use Iterators
Karoly.Bosa@jku.at

You get an iterator for a collection by calling its iterator method:

static void filter(Collection<?> c) {
for (Iterator<?> it = c.iterator(); it.hasNext();)

if (!cond(it.next())) it.remove();

}

Bulk Operations of Collections
Karoly.Bosa@jku.at

• containsAll — returns true if the target Collection contains all of the
elements in the specified Collection.

• addAll — adds all of the elements in the specified Collection to the target
Collection.

• removeAll — removes from the target Collection all of its elements that are
also contained in the specified Collection.

• retainAll — removes from the target Collection all its elements that are not
also contained in the specified Collection. That is, it retains only those
elements in the target Collection that are also contained in the specified
Collection.

• clear — removes all elements from the Collection.

Simple Examples: c.removeAll(Collections.singleton(e));

c.removeAll(Collections.singleton(null));

toArray Operations
Karoly.Bosa@jku.at

•Converting a Collection to an Array

•Usually employed in the case of older APIs that expect arrays

on input.

•Example:
Object[] a = c.toArray();

Or if we suppose that c is known to contain only strings:

String[] a = c.toArray(new String[0]);

The Set Interface
Karoly.Bosa@jku.at

• A Set is a Collection that cannot contain duplicate elements.

• It models the mathematical set abstraction.

• The Set interface contains only methods inherited from

Collection and adds the restriction that duplicate elements
are prohibited.

•Two Set instances are equal if they contain the same
elements independently their implementations

The Set Interface
Karoly.Bosa@jku.at

public interface Set<E> extends Collection<E> {

// Basic operations

int size();
boolean isEmpty();
boolean contains(Object element);
boolean add(E element);
boolean remove(Object element);
Iterator<E> iterator();
// Bulk operations

boolean containsAll(Collection<?> c);
boolean addAll(Collection<? extends E> c);
boolean removeAll(Collection<?> c);
boolean retainAll(Collection<?> c);
void clear();
// Array operations

Object[] toArray();
<T> T[] toArray(T[] a);

}

It contains only methods inherited from Collection.

Set Implementation
Karoly.Bosa@jku.at

• HashSet stores its elements in a hash table, it is the best-performing

implementation; however it makes no guarantees concerning the order of the

element.

• TreeSet stores its elements in a red-black tree(a kind of self-balanced
binary search tree), orders its elements based on their values; it is

substantially slower than HashSet.

• LinkedHashSet is implemented as a hash table with a linked list running

through it, orders its elements based on the order in which they were inserted

into the set (insertion-order).

Each implementation has a no argument (HashSet(), TreeSet(), LinkedHashSet())
constructor and another constructor that expects another Collection object as an

argument (conversion constructors):

Set<Type> s = new HashSet<Type>(c);

Example: Finding Duplicates
Karoly.Bosa@jku.at

import java.util.*;

public class FindDups {

public static void main(String[] args) {

Set<String> s = new HashSet<String>();

for (String a : args)

if (!s.add(a))

System.out.println("Duplicate detected: " + a);

System.out.println(s.size() + " distinct words: " + s); }

}

The program takes the words in its argument list and prints out any duplicate

words, the number of distinct words, and a list of the words with duplicates

eliminated.

Example: Finding Duplicates Output
Karoly.Bosa@jku.at

Now run the program:
java FindDups i came i saw i left

The following output is produced:
Duplicate detected: i

Duplicate detected: i

4 distinct words: [i, left, saw, came]

Example: Finding Duplicates
Karoly.Bosa@jku.at

import java.util.*;

public class FindDups {

public static void main(String[] args) {

Set<String> s = new HashSet<String>();

for (String a : args)

if (!s.add(a))

System.out.println("Duplicate detected: " + a);

System.out.println(s.size() + " distinct words: " + s); }

}

Note that the code always refers to interface type (Set):
Set<String> s = new HashSet<String>();

rather than by its implementation type (HashSet).
HashSet<String> s = new HashSet<String>();

Example: Finding Duplicates with TreeSet
Karoly.Bosa@jku.at

import java.util.*;

public class FindDups {

public static void main(String[] args) {

Set<String> s = new TreeSet<String>();

for (String a : args)

if (!s.add(a))

System.out.println("Duplicate detected: " + a);

System.out.println(s.size() + " distinct words: " + s); }

}

Note that the code always refers to interface type (Set):
Set<String> s = new HashSet<String>();

rather than by its implementation type (HashSet).
HashSet<String> s = new HashSet<String>();

Implementation HashSet makes no guarantees as to the order of the elements.

If you want the program to print the word list in alphabetical order, change the Set's

implementation type from HashSet to TreeSet.

Example: Finding Duplicates Output 2
Karoly.Bosa@jku.at

Now run the program:
java FindDups i came i saw i left

The following output is produced:
Duplicate detected: i

Duplicate detected: i

4 distinct words: [came, i, left, saw]

Instead of

4 distinct words: [i, left, saw, came]

Example 2: Finding Duplicates 2
Karoly.Bosa@jku.at

import java.util.*;

public class FindDups2 {

public static void main(String[] args) {

Set<String> uniques = new HashSet<String>();

Set<String> dups = new HashSet<String>();

for (String a : args)

if (!uniques.add(a)) dups.add(a);

// Destructive set-difference

uniques.removeAll(dups);

System.out.println("Unique words: " + uniques);

System.out.println("Duplicate words: " + dups); }

}

We want to know which words in the argument list occur only once and
which occur more than once, but you do not want any duplicates printed out
repeatedly.

Example 2: Finding Duplicates 2 Output
Karoly.Bosa@jku.at

Now run the program:
java FindDups i came i saw i left

The following output is produced:
Unique words: [left, saw, came]

Duplicate words: [i]

The List Interface
Karoly.Bosa@jku.at

• A List is an ordered Collection (sometimes called a sequence, resizable

array).

• Lists may contain duplicate elements.

• In addition to the operations inherited from Collection, the List interface
includes operations for the following:

- Positional access — manipulates elements based on their
numerical position in the list

- Search — searches for a specified object in the list and returns its
numerical position

- Iteration — extends Iterator semantics to take advantage of the
list's sequential nature

- Range-view — performs arbitrary range operations on the list.

The List Interface
Karoly.Bosa@jku.at

public interface List<E> extends Collection<E> {

// Positional access

E get(int index);

E set(int index, E element);

boolean add(E element); //Add an element to the end of the List

void add(int index, E element);

E remove(int index);

boolean addAll(int index, Collection<? extends E> c);

// Search

int indexOf(Object o);

int lastIndexOf(Object o);

// Iteration

ListIterator<E> listIterator();

ListIterator<E> listIterator(int index);

// Range-view

List<E> subList(int from, int to);

}

This slide contains only the new methods (added to the inherited ones by
the List)

List Implementations
Karoly.Bosa@jku.at

• ArrayList is based on conventional arrays and its is usually the
better-performing implementation.

• LinkedList which offers better performance under certain
circumstances (in case of highly variable number of elements).

• Vector and Stack are in the language because of historical reason

and backward compatibility. They are generic data types, too.

Each implementation has a no argument (ArrayList(), LinkedList(),
Vector()) constructor and another constructor that expects another Collection
object as an argument (conversion constructors):

List<Type> l = new LinkedList<Type>(c);

List Itherator
Karoly.Bosa@jku.at

As before the Iterator returned by List's iterator method, but List also
provides a richer iterator, called a ListIterator, which allows you to:

• traverse the list in either direction,
• modify the list during iteration, and
• obtain the current position of the iterator.

The ListIterator interface follows:

public interface ListIterator<E> extends Iterator<E> {

boolean hasNext();

E next();

boolean hasPrevious();

E previous();

int nextIndex();

int previousIndex();

void remove();

void set(E e);

void add(E e);

}

How to Use ListIterator
Karoly.Bosa@jku.at

Traverse a list from its end:

…

for (ListIterator<Type> it = list.listIterator(list.size()); it.hasPrevious();) {

Type t = it.previous();

...

}

i

Examples for Range-View Operation
Karoly.Bosa@jku.at

Removing a range of elements from a List:

list.subList(fromIndex, toIndex).clear();

Similar idioms can be constructed to search for an element in a

range:

int i = list.subList(fromIndex, toIndex).indexOf(o);

int j = list.subList(fromIndex, toIndex).lastIndexOf(o);

Utility Classes
Karoly.Bosa@jku.at

• java.util.Arrays

• Filling up Arrays with values Arrays.fill(array, value);

• Sorting Arrays Arrays.sort(array);

• Searching in sorted Arrays Arrays.binarySearch(array, value);

• Converting Arrays to Lists Arrays.asList(array);

• java.util.Collections

• Sorting Lists

• Searching in Lists

• Searching for the maximal element in Collection

• …

Class Collections: Singleton and Empty
Karoly.Bosa@jku.at

Class Collections consists exclusively of static methods that operate on or return

collections for instance:

•Special case: Creating single a set/list/map collection containing a
single element, e.g.:

Set set = Collections.singleton(“Hello”);

List list = Collections.singletonList(“First”); //since java 1.3

Map map = Collections.singletonMap(“Key”,”Value”); //since java 1.3

• Static constants for empty collections:

Set set = Collections.EMPTY_SET;

List list = Collections.EMPTY_LIST;

Map map = Collections.EMPTY_MAP;

• Other operations/methods of the class Collections see later.

Class Collections: nCopies and fill
Karoly.Bosa@jku.at

If you need an immutable list with multiple copies of the same element:

List fullOfNullList = Collections.nCopies(10, null);

By itself, that doesn’t seem to useful. However you can then make the list
modifiable by passing it to another list:

List l = new ArrayList(fullOfNullList);

If you intend to Replace all of the elements of the specified list with the specified

element:

List<String> list = new LinkedList<String>();

…

Collections.fill(list, “Hello“);

Class Collections: Algorithms
Karoly.Bosa@jku.at

Most algorithms in the Collections class apply specifically to List:

• sort — sorts a List using a merge sort algorithm, which provides a
fast, stable sort.

• shuffle — randomly permutes the elements in a List.
• reverse — reverses the order of the elements in a List.
• rotate — rotates all the elements in a List by a specified distance.
• swap — swaps the elements at specified positions in a List.
• replaceAll — replaces all occurrences of one specified value with

another.
• fill — overwrites every element in a List with the specified value.
• copy — copies the source List into the destination List.
• binarySearch — searches for an element in an ordered List using the

binary search algorithm.
• indexOfSubList — returns the index of the first sublist of one List that

is equal to another.
• lastIndexOfSubList — returns the index of the last sublist of one List

that is equal to another.

Class Collections: Sort
Karoly.Bosa@jku.at

import java.util.*;

public class Sort {

public static void main(String[] args) {

List<String> list = Arrays.asList(args);

Collections.sort(list);

System.out.println(list);

}

}

Let's run the program.
java Sort i walk the line

The following output is produced.
[i, line, the, walk]

Of course, this sort works only if the elements of the list implement the Comparable
interface as in case of our generic Quick Sort program.

