
1

Praktische
Softwaretechnologie

Károly Bósa

(Karoly.Bosa@jku.at)

Research Institute for Symbolic Computation

(RISC)

Lecture 4.

2

Visibility
Karoly.Bosa@jku.at

For Fields and Methods: there are 4 different visibilities

Classes can be only public or default

The real rules for the visibility is more compound, read more

if it is necessary.

modifier

private

(default)

protected

public

Visible

Only in the same class

In each class of the same package

In the same package and the inherited/sub classes

From every class

3

Principles of Visibility
Karoly.Bosa@jku.at

• Package: a well arranged unit of cooperating classes

• Fields are almost always private

• Classes are public, if they part of the facade/interface of the

package

• The methods are public, if they are part of the documented

interface of the class.

• The methods are private, if they are contains the details of

some implementations/algorithms.

• The modifier protected is used only within the classes which

were designed for inheritance

4

The Class java.lang.Object
Karoly.Bosa@jku.at

If there is not explicitly given parent class � java.lang.Object

�Each class is derived/inherited from the class Object

The Object defines some methods:

• equals(Object o)

• hashCode()

• toString()

• …

These can/should be overwritten by the inherited classes.

5

The Class java.lang.Object
Karoly.Bosa@jku.at

If there is not explicitly given parent class � java.lang.Object

�Each objects is derived/inherited from the class Object

The Object defines some methods:

• equals(Object o)

• hashCode()

• toString()

• …

These can/should be overwritten by the inherited classes.

6

instanceof
Karoly.Bosa@jku.at

For testing a dynamic type in runtime:

p instanceof WeightedPoint � It is true if p is an instance object

of class WeightedPoint or of one of its subclasses

7

instanceof
Karoly.Bosa@jku.at

For testing a dynamic type in runtime:

p instanceof WeightedPoint � It is true if the type of value of p is

an instance object of WeightedPoint or of one of its subclasses

Typical application:

8

The Modifier final
Karoly.Bosa@jku.at

The values of data fields must not be modified after their

initialization:

private final int x;

It is useful to indicate that the value cannot change!

Static constants (values are always knows at compile time):
public static final int MONTHS_PER_YEAR = 12;

In case of methods, this modifier forbids the overriding:
public final void m(…) {… }

In case of classes, the modifier does not allow to create the sub

classes:

public final class A {…}

9

Failure Handling in C
Karoly.Bosa@jku.at

The error handling in C happens either via return value:
c = getc();

if (c == EOF) {

… Failure Handling

}

Or via the global variable errno:

if ((fd = fopen(“file.txt, “r”)) == -1) {

if (errno == EACCESS) “{

… Failure Handling

}

…

}

�Error prone, diverts the attention from the important issues
�Failure handling is often neglected

10

Exceptions
Karoly.Bosa@jku.at

The error handling in Java: Exceptions

Exceptions are objects instantiated from one of the sub classes
of java.lang.Exception

Exceptions are “thrown”:
throw new java.io.IOException();

Exceptions are “caught::
try {

…Here an Exception can be thrown…

} catch (java.io.IOException e) {

…Here java.io.IOException e can be treated…

}

� A “throw” can be within the called methods

11

Interrupted Termination
Karoly.Bosa@jku.at

“Official” terminology: each statement (and each block) can

end/complete as follows:

• Performing until the last statement/command
� normal end

• Performing until: break continue, return or throw

� interuppted termination

Interrupted Termination always has a particular reason, for

instance in case of methods:
• a method is interrupted by break or throw

• a method completes normally with return value

12

Interrupted Termination 2
Karoly.Bosa@jku.at

The statement throw e always causes a interrupted termination

When a statement located in a block, an if –then-else or a loop

is interrupted (and the blocks/methods where it happened do
not contain a corresponding try-catch block), them:

�Outer blocks will be interrupted as well because of the

same reason.

�The called methods will be interrupted as well because

of the same reason.

Consequently: An Exception is able to jump back from more

than one embedded blocks or method calls and finally it will

cause an interrupted termination of the whole program.

It can be stopped only by applying a try-catch structure

13

try-catch Semantic
Karoly.Bosa@jku.at

• P1 terminates normally � TC terminates normally

• P1 is interrupted by an Exception e of Type Exc � P2 is

called and TC terminates as P2

• P1 is interrupted by another reason � TC is interrupted

because of the same reason

14

try-catch-finally Semantic
Karoly.Bosa@jku.at

Like the try-catch, but:

• In all circumstances P3 will be performed at last.

• If P3 terminates normally � TCF terminates normally

• If P3 is interrupted � TCF is interrupted because of the same

reason

15

Throws Declaration
Karoly.Bosa@jku.at

Exceptions can be thrown via methods, but they have to be

declared:
public void writeData() throws java.io.IOException {

…

}

It is required for all Exceptions, which were thrown, but not
caught (in the method)

Exception: There are some Exceptions which are “unchecked” and

they do not need to be declared.

16

The Throwable Hierarchy
Karoly.Bosa@jku.at

17

Recall the HelloWorld2 Example
Karoly.Bosa@jku.at

import java.io.*;

public class HelloWorld2 {

public static void main (String[] args) throws IOException {

PrintWriter out = new PrintWriter(new FileWriter(“hello.txt”));

out.println(“Hello World!”);

out.close();

}

}

18

Own Exceptions
Karoly.Bosa@jku.at

There are 2 predefined constructors usually:

19

null
Karoly.Bosa@jku.at

The value null is comprised by all reference types:

Accessing to Data Fields and Methods via null is not possible
� NullPointerException in runtime

20

Casts
Karoly.Bosa@jku.at

Cast = Type Conversion

• Between primitive types with different runtime semantic

21

Casts 2
Karoly.Bosa@jku.at

Cast = Type Conversion

• Between primitive types with different runtime semantic

• Between reference types

Compiler error

Compiler error

22

Casts 2
Karoly.Bosa@jku.at

Cast = Type Conversion

• Between primitive types with different runtime semantic

• Between reference types

23

Casts 2
Karoly.Bosa@jku.at

Cast = Type Conversion

• Between primitive types with different runtime semantic

• Between reference types

• It changes only static types, but not dynamic types

or values

• In case of any error it throws ClassCastException

24

Interfaces
Karoly.Bosa@jku.at

25

Interfaces
Karoly.Bosa@jku.at

The class implements the declared methods of the interface

26

Interfaces
Karoly.Bosa@jku.at

27

Multiple Inheritance with Interfaces
Karoly.Bosa@jku.at

28

Multiple Inheritance with Interfaces
Karoly.Bosa@jku.at

29

Multiple Inheritance with Interfaces
Karoly.Bosa@jku.at

30

Multiple Inheritance with Interfaces
Karoly.Bosa@jku.at

In C++: there exists multiple inheritance
� complicated rules

31

Elements in Interfaces
Karoly.Bosa@jku.at

• Method declarations:
- Always (implicit) public

- Never static

• No constructors

• Fields
- Always public static final, thus constants

• Interfaces can be extended only with other interfaces

32

Usage of Interfaces
Karoly.Bosa@jku.at

33

Abstract Classes
Karoly.Bosa@jku.at

A class is abstract, if it is declared as follows:
public abstract class AbstractStack {

…

}

34

Abstract Classes
Karoly.Bosa@jku.at

A class is abstract, if it is declared as follows:
public abstract class AbstractStack {

…

}

An abstract class

• can contain abstract methods without implementation
public abstract void push(String s)

� they will be overwritten by (non-abstract) implemented

sub classes

35

Abstract Classes
Karoly.Bosa@jku.at

A class is abstract, if it is declared as follows:
public abstract class AbstractStack {

…

}

An abstract class

• can contain abstract methods without implementation
public abstract void push(String s)

� they will be overwritten by (non-abstract) implemented

sub classes

• Cannot be instantiated
new AbstractStack �Compiler error!

36

Typical Application of Abstract Classes
Karoly.Bosa@jku.at

�BoundedStack extends AbstractStack will inherit clear().

�However it can be overwritten with a more efficient implementation.

37

Enumeration Types
Karoly.Bosa@jku.at

Types with a prescribed, finite quantity of discrete values

Apple

Pear

38

Enumeration Types
Karoly.Bosa@jku.at

Types with a prescribed, finite quantity of discrete values

�There is no type conversions

� There is not revision for the (legal) values

Apple

Pear

39

Enumeration Types 2
Karoly.Bosa@jku.at

public enum Day {

SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY, SATURDAY

}

40

Enumeration Types 2
Karoly.Bosa@jku.at

public class EnumTest {

Day day;

public EnumTest(Day day) { this.day = day;}

public void tellItLikeItIs() {

switch (day) {

case MONDAY: System.out.println("Mondays are bad."); break;

case FRIDAY: System.out.println("Fridays are better."); break;

case SATURDAY:

case SUNDAY: System.out.println("Weekends are best."); break;

default: System.out.println("Midweek days are so-so."); break;

}

}

public static void main(String[] args) {

EnumTest firstDay = new EnumTest(Day.MONDAY);

firstDay.tellItLikeItIs();

EnumTest thirdDay = new EnumTest(Day.WEDNESDAY);

thirdDay.tellItLikeItIs();

EnumTest fifthDay = new EnumTest(Day.FRIDAY);

fifthDay.tellItLikeItIs();

EnumTest sixthDay = new EnumTest(Day.SATURDAY);

sixthDay.tellItLikeItIs();

EnumTest seventhDay = new EnumTest(Day.SUNDAY);

seventhDay.tellItLikeItIs();

}

41

Garbage Collection
Karoly.Bosa@jku.at

Release an object, if there is not any reference pointing to it any

more. (a null value should be given to the variable).

� It can avoid lots of problem related to illegal references

� Release of network sockets, database connections, etc. are

still manual

42

Recommended to Read
Karoly.Bosa@jku.at

Reading and completing the course material from the

online Java Tutorial:

http://download.oracle.com/javase/tutorial/java/index.html

• Interfaces and Inheritance

43

Exercise 5 (Extension for Exercise 4)
Karoly.Bosa@jku.at

Extend the implementation “stack” (from Exercise 4) with a sub class (inherited

from class Stack) called DebugStack, in which:

• the constructor of DebugStack waits for a name String which is stored in a

field

• when the constructor is called, it prints out a message: “DebugStack XYZ

is initialized”

(where “XYZ” is the value of the name string) and

• DebugStack rewrites the methods “push” and “pop” such that they print

out debug messages, too:

- “String blabla is inserted into the DebugStack XYZ”

- “String blabla is removed from the DebugStack XYZ”

Then modify your test program (from Exercise 4) such that it applies two DebugStack

Objects.

Deadline: 09.04.2014

44

Exercise 6
Karoly.Bosa@jku.at

Deadline: 09.04.2014

1. Improve your stack implementation:

• Arrange the different Stack classes into a stack package and their test programs

into a test package

• Create an interface Stack with

- push(String s), pop(), isEmpty(), toString() and

- clear() removes all values from the stack

- exch() exchange the first and the second elements in the stack.

- peek() returns with the first/top element of the stack, but does not

remove it.

• Create abstract class AbstractStack implements interface Stack

- Leave push, pop, toString and isEmpty as abstract methods

- Implement clear, exch and peek with calling abstract methods

45

Exercise 6 (continuation)
Karoly.Bosa@jku.at

Deadline: 09.04.2014

2. Rename the initial stack class (which is called Stack as well and which was

implemented first in Exercise 4.) to BoundedStack, then:
• Extends AbstractStack in BoundedStack

• Inherits the new methods from AbstractStack

• Define exception classes (in the stack package) and throw them in case of

empty/full stack in the corresponding methods

• In the test program, try out and check the new methods (use

 the interface Stack as an expected argument type)

• In the test program, create errors (e.g.: pop from an empty stack, or push into a

full stack) and handle the exceptions

46

Exercise 6 (continuation 2)
Karoly.Bosa@jku.at

Deadline: 09.04.2014

3. Reimplement DebugStack with delegation instead of inheritance (expect a class

which implements the interface Stack):

• Constructor: DebugStack(String name, Stack delegate)

• Store the reference for the delegate in a private field

• All operations are performed on the delegate, but with the debugging-versions of

the methods

• Take care! DebugStack does not have any super class anymore (no inheritance),

rather you should implement new methods with delegation (its methods work

with the data field delegate given as the second argument of the constructor).

Test the newly implemented BoundedStack and DebugStack classes in separate test

programs.

