
1

Praktische
Softwaretechnologie

Károly Bósa

(Karoly.Bosa@jku.at)

Research Institute for Symbolic Computation

(RISC)

Lecture 2.

2

Books
Karoly.Bosa@jku.at

• James Gosling, Bill Joy, Guy Steele

The JavaTM Language Specification

3

Books
Karoly.Bosa@jku.at

• James Gosling, Bill Joy, Guy Steele

The JavaTM Language Specification

• James Gosling, Bill Joy, Guy Steele, Gilad Bracha

The JavaTM Language Specification (2nd/3rd edition)

(online)

4

Books
Karoly.Bosa@jku.at

• James Gosling, Bill Joy, Guy Steele

The JavaTM Language Specification

• James Gosling, Bill Joy, Guy Steele, Gilad Bracha

The JavaTM Language Specification (2nd/3rd edition)

(online)

• Ken Arnold, James Gosling, David Holmes

The JavaTM Programming Language

5

Books
Karoly.Bosa@jku.at

• James Gosling, Bill Joy, Guy Steele

The JavaTM Language Specification

• James Gosling, Bill Joy, Guy Steele, Gilad Bracha

The JavaTM Language Specification (2nd/3rd edition)

(online)

• Ken Arnold, James Gosling, David Holmes

The JavaTM Programming Language

• S. Zakhour, S. Hommel, et al: The JavaTM Tutorial (online)

6

Books
Karoly.Bosa@jku.at

• James Gosling, Bill Joy, Guy Steele

The JavaTM Language Specification

• James Gosling, Bill Joy, Guy Steele, Gilad Bracha

The JavaTM Language Specification (2nd/3rd edition)

(online)

• Ken Arnold, James Gosling, David Holmes

The JavaTM Programming Language

• S. Zakhour, S. Hommel, et al: The JavaTM Tutorial (online)

• Xiaoping Jia: Object-Oriented Software Development Using

Java – Principles. . .

7

Books
Karoly.Bosa@jku.at

• James Gosling, Bill Joy, Guy Steele

The JavaTM Language Specification

• James Gosling, Bill Joy, Guy Steele, Gilad Bracha

The JavaTM Language Specification (2nd/3rd edition)

(online)

• Ken Arnold, James Gosling, David Holmes

The JavaTM Programming Language

• S. Zakhour, S. Hommel, et al: The JavaTM Tutorial (online)

• Xiaoping Jia: Object-Oriented Software Development Using

Java – Principles. . .

• Bruce Eckel: Thinking in Java (3rd edition online)

8

History of Java
Karoly.Bosa@jku.at

• It began as “Oak” created by James Gosling in 1991 (the first

version of Emacs)

• The first public version was issued in 1995

• Until the end of 1995: Integration into Netscape (JavaScript, too)

• The definition of the language in 1996 from Gosling, Bill Joy,

(BSD Unix, csh, vi, a part of TCP/IP,. . .), Guy Steele

(Common LISP Book, Scheme,. . .)

9

History of Java
Karoly.Bosa@jku.at

• It began as “Oak” created by James Gosling in 1991 (the first

version of Emacs)

• The first public version was issued in 1995

• Until the end of 1995: Integration into Netscape (JavaScript, too)

• The definition of the language in 1996 from Gosling, Bill Joy,

(BSD Unix, csh, vi, a part of TCP/IP,. . .), Guy Steele

(Common LISP Book, Scheme,. . .)

For comparison:

• The beginning of the World Wide Web 1990-1991

• Netscape: 1994

• Internet Explorer: 1995

10

Compilation of a C Program
Karoly.Bosa@jku.at

Executable Program

11

Compilation of a Java Program
Karoly.Bosa@jku.at

Byte-Code File

12

Consequence of Byte-Code
Karoly.Bosa@jku.at

• .class files are platform independent:

- It can run in different systems

- The compiler is platform independent

13

Consequence of Byte-Code
Karoly.Bosa@jku.at

• .class files are platform independent:

- It can run in different systems

- The compiler is platform independent

• The byte-code is very compact:

- Useful for network transfer

14

Consequence of Byte-Code
Karoly.Bosa@jku.at

• .class files are platform independent:

- It can run in different systems

- The compiler is platform independent

• The byte-code is very compact:

- Useful for network transfer

• The interpreter is able to revise the access rights

- It is not necessary to trust in foreign codes

15

Consequence of Byte-Code
Karoly.Bosa@jku.at

• .class files are platform independent:

- It can run in different systems

- The compiler is platform independent

• The byte-code is very compact:

- Useful for network transfer

• The interpreter is able to revise the access rights

- It is not necessary to trust in foreign codes

• It is not so fast as machine language

- But it is fast with JIT

16

For Instance: HelloWorld
Karoly.Bosa@jku.at

17

For Instance: HelloWorld
Karoly.Bosa@jku.at

The class keyword. The Java Programs consist of class- and

interface-definitions.

18

For Instance: HelloWorld
Karoly.Bosa@jku.at

The class names start with a capital letters. In case of more

worlds: sepatatedByCapitalLetters (“camel case”).

19

For Instance: HelloWorld
Karoly.Bosa@jku.at

Curly brackets is like in C (determine a block). The declarations

of all attributes and methods are located between them.

20

For Instance: HelloWorld
Karoly.Bosa@jku.at

The public keyword. Such a method can be called (available)

from any other class.

21

For Instance: HelloWorld
Karoly.Bosa@jku.at

The static keyword. Such a method is shared among all

instances of a class.

22

For Instance: HelloWorld
Karoly.Bosa@jku.at

The void is the “empty type”/”no type”. Such a method does not

have a return value.

23

For Instance: HelloWorld
Karoly.Bosa@jku.at

The name of the method. The method names starts with small

letters. In case of more words “camel case” is used.

Method names called main can be called as a main program

(they are always public and static).

java HelloWorld

• Calls the HelloWorld.main(…)

24

For Instance: HelloWorld
Karoly.Bosa@jku.at

The class String is class of Unicode character chain.

The type String[] designates an array of Strings.

25

For Instance: HelloWorld
Karoly.Bosa@jku.at

The name of the arguments. The arguments, attributes and

variables are written with small letter and “camel case”.

The arguments of a main program are taken from the command

line.

26

For Instance: HelloWorld
Karoly.Bosa@jku.at

The class System contains methods for accessing to the runtime

environment: I/O, etc.

27

For Instance: HelloWorld
Karoly.Bosa@jku.at

out is a static attribute of the class System.

It denotes the standard output and it has a type java.io.PrintStream

28

For Instance: HelloWorld
Karoly.Bosa@jku.at

The println is a method of the class PrintStream. It writes a String

into the Stream, which will be followed by a new line character.

29

For Instance: HelloWorld
Karoly.Bosa@jku.at

It is a string literal

30

For Instance: HelloWorld
Karoly.Bosa@jku.at

Every statement/command ends with semicolon.

31

HelloWorld Diagram
Karoly.Bosa@jku.at

Standard Output

32

Data Types
Karoly.Bosa@jku.at

There are 2 kinds of data types

• Primitive types: int, char, float, etc (like the

corresponding types in C)

33

Data Types
Karoly.Bosa@jku.at

There are 2 kinds of data types

• Primitive types: int, char, float, etc (like the

corresponding types in C)

• Reference types: references of object (similar to the

pointer of struct in C)

34

Data Types
Karoly.Bosa@jku.at

There are 2 kinds of data types

• Primitive types: int, char, float, etc (like the

corresponding types in C)

• Reference types: references of object (similar to the

pointer of struct in C)

Arrays, String, … are directly supported by the language,
however they are object types ultimately.

35

Primitive Types
Karoly.Bosa@jku.at

Floating Point Number

Floating Point Number

true or false

a 16-bit Unicode character

36

Primitive Types
Karoly.Bosa@jku.at

Floating Point Number

Floating Point Number

true or false

a 16-bit Unicode character

- Machine independent

37

Primitive Types
Karoly.Bosa@jku.at

Floating Point Number

Floating Point Number

true or false

a 16-bit Unicode character

- No unsigned type

38

Primitive Types
Karoly.Bosa@jku.at

Floating Point Number

Floating Point Number

true or false

a 16-bit Unicode character

- Default values: 0, false, …

39

Literals
Karoly.Bosa@jku.at

40

Variable Declarations
Karoly.Bosa@jku.at

• Initialized with default value:

int i;

• With initialization:

int i = 23;

• In the middle of a block as well:

int f(int i) {

int j;

…do something with i and j…

boolean jPositiv = (j >0);

…

}

41

Arrays
Karoly.Bosa@jku.at

Similar as in C, but:

Always allocated dynamically!

Such as in C, it does not work!

42

Arrays 2.
Karoly.Bosa@jku.at

In Java:

int f() {

int[] a; //this is a reference to an array whose elements are int

a = new int[10]; //place for 10 integer value are allocated

a[2] = 3;

…

}

Arrays are realized like object ���� int[] is a reference type

43

Arrays 3.
Karoly.Bosa@jku.at

Number of elements in an Array:

a.length

a[0] is the first, a[a.length-1] is the last element

There is not Pointer-Aritmethic:

in C: a+1 is a pointer to the array from its 2. element

In Java: an independent reference to the array and index are

needed

44

Matrices/Multidimensional Arrays
Karoly.Bosa@jku.at

45

Allocation of Multidimensional Arrays
Karoly.Bosa@jku.at

A 5 times 5 Array/Matrix:

Or, as a shortcut:

46

Strings
Karoly.Bosa@jku.at

Unicode Strings

Literal: “This is a row\nThis is another row”

Concatenation of Strings:

String a = “This is a row”;

String b = “This is another row”;

String twoRows = a + “\n” + b;

Addition of other types:

String s = “The answer is: “ + 42;

� The outcome will be: “The answer is: 42”

47

More about Strings
Karoly.Bosa@jku.at

Strings are also reference types:

String a = “World”;

String b = a;

Here only the reference was copied (not the value)

The String objects never change after their creation:

a = “Hello ” + a;

48

More about Strings
Karoly.Bosa@jku.at

Strings are also reference types:

String a = “World”;

String b = a;

Here only the reference was copied (not the value)

The String objects never change after their creation:

a = “Hello ” + a;

• It creates a new string: “Hello World”

49

More about Strings
Karoly.Bosa@jku.at

Strings are also reference types:

String a = “World”;

String b = a;

Here only the reference was copied (not the value)

The String objects never change after their creation:

a = “Hello ” + a;

• It creates a new string: “Hello World”

• The reference of the new String is stored in a

50

More about Strings
Karoly.Bosa@jku.at

Strings are also reference types:

String a = “World”;

String b = a;

Here only the reference was copied (not the value)

The String objects never change after their creation:

a = “Hello ” + a;

• It creates a new string: “Hello World”

• The reference of the new string is stored in a

• b still refers to the old string

51

Operators
Karoly.Bosa@jku.at

Operators are similar as in C:

• Arithmetik: +, -, *, /, %

• Bind of Variables: =, +=, -=, …

• Comparison: ==, !=, <, >, <=, >=

• Incrementing/Decrementing: ++, --

• Logical Operations: &&, ||, !

• Logical Operations on Bits: &, |, ^

• Conditional Structures: ? :

• Object Operators: new, instanceof

52

Control Structures: if-then-else
Karoly.Bosa@jku.at

53

Control Structures: switch
Karoly.Bosa@jku.at

54

Control Structures: while
Karoly.Bosa@jku.at

digitsum

55

Control Structures: do-while
Karoly.Bosa@jku.at

56

Control Structures: for
Karoly.Bosa@jku.at

57

Control Structures: return
Karoly.Bosa@jku.at

58

Control Structures: break/continue
Karoly.Bosa@jku.at

Without label:

59

Control Structures: break/continue
Karoly.Bosa@jku.at

With label:

60

Static Methods
Karoly.Bosa@jku.at

So far there is not any object that was created by
ourselves.

���� There is not any method belonging to such an object

61

Static Methods
Karoly.Bosa@jku.at

So far there is not any object that was created by
ourselves.

���� There is not any method belonging to such an object

The main program:

public static void main(String args[])

62

Static Methods
Karoly.Bosa@jku.at

So far there is not any object that was created by
ourselves.

���� There is not any method belonging to an object

The main program:

public static void main(String args[])

Our own static methods:

public static int myMethod(int i)

63

Static Methods
Karoly.Bosa@jku.at

So far there is not any object that was created by
ourselves.

���� There is not any method belonging to such an object

The main program:

public static void main(String args[])

Our own static methods:

public static int myMethod(int i)

Calling from the main:

result = myMethod(23);

64

Static Methods
Karoly.Bosa@jku.at

So far there is not any object that was created by
ourselves.

���� There is not any method belonging to such an object

The main program:

public static void main(String args[])

Our own static methods:

public static int myMethod(int i)

Calling from the main:

result = myMethod(23);

Global variables are static as well:

static int[] qu;

65

.java files
Karoly.Bosa@jku.at

• Generally every class is defined in a .java file.

• The name of the file has to correspond with the name of
the class. For instance, the content of the file Exercise.java:

class Exercise {

static int counter;

…

static double f(int i) {

…

}

…

public static void main(String args[]) {

…

}

}

66

Comments
Karoly.Bosa@jku.at

There are 3 kinds of the comments:

• Comment in one line: //

• Comment in more lines: /* … */

• .JavaDoc comment: /** … */

67

Recommended to Read
Karoly.Bosa@jku.at

Reading and completing the course material from the
online Java Tutorial:

http://download.oracle.com/javase/tutorial/java/index.html

• Object Oriented Concept

• Language Basics

68

Exercise 2 Deadline: 02.04.2014
Karoly.Bosa@jku.at

Hallo World – Advanced Version

java Hallo

�Who is there?

java Hallo Tom

�Hallo Tom!

java Hallo Tom Tim

�Hallo Tom and Tim!

java Hallo Tracy Tom Tim (Attention: Arbitrary many arguments)

�Hallo Tracy, Tom and Tim!

69

Exercise 3 Deadline: 02.04.2014
Karoly.Bosa@jku.at

Matrix Product of two matrices (4x5 and 5x4 at least)

• Matrices can be initialized from the source code.

• Output should be printed out in a “nice” matrix format
on the screen.

