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History of Java
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• It began as “Oak” created by James Gosling in 1991 (the first 

version of Emacs)

• The first public version was issued in 1995

• Until the end of 1995: Integration into Netscape (JavaScript, too)

• The definition of the language in 1996 from Gosling, Bill Joy,

(BSD Unix, csh, vi, a part of TCP/IP,. . . ), Guy Steele

(Common LISP Book, Scheme,. . . )

For comparison:

• The beginning of the World Wide Web 1990-1991

• Netscape: 1994

• Internet Explorer: 1995
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Compilation of a C Program
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Executable Program
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Compilation of a Java Program
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Byte-Code File
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Consequence of Byte-Code
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• .class files are platform independent:

- It can run in different systems

- The compiler is platform independent

• The byte-code  is very compact:

- Useful for network transfer

• The interpreter is able to revise the access rights

- It is not necessary to trust in foreign codes

• It is not so fast as machine language

- But it is fast with JIT
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For Instance: HelloWorld
Karoly.Bosa@jku.at

The class keyword. The Java Programs consist of class- and 

interface-definitions.
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For Instance: HelloWorld
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The class names start with a capital letters. In case of more 

worlds: sepatatedByCapitalLetters (“camel case”).
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For Instance: HelloWorld
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Curly brackets is like in C (determine a  block). The declarations 

of all attributes and methods are located between them.
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For Instance: HelloWorld
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The public keyword. Such a method can be called (available) 

from any other class.
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For Instance: HelloWorld
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The static keyword. Such a method is shared among all 

instances of a class.
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For Instance: HelloWorld
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The void is the “empty type”/”no type”. Such a method does not 

have a return value. 



23

For Instance: HelloWorld
Karoly.Bosa@jku.at

The name of the method. The method names starts with small 

letters. In case of more words “camel case” is used.

Method names called main can be called as a main program 

(they are always public and static).

java HelloWorld

• Calls the HelloWorld.main(… )
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For Instance: HelloWorld
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The class String is class of Unicode character chain.

The type String[] designates an array of Strings.
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For Instance: HelloWorld
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The name of the arguments. The arguments, attributes and 

variables are written with small letter and “camel case”.

The arguments of a main program are taken from the command 

line.
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For Instance: HelloWorld
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The class System contains methods for accessing to the runtime 

environment: I/O, etc.
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For Instance: HelloWorld
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out is a static attribute of the class System. 

It denotes the standard output and it has a type java.io.PrintStream  
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For Instance: HelloWorld
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The println is a method of the class PrintStream. It writes a String 

into the Stream, which will be followed by a new line character.
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For Instance: HelloWorld
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It is a string literal
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For Instance: HelloWorld
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Every statement/command ends with semicolon.
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HelloWorld Diagram
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Standard Output
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There are 2 kinds of data types

• Primitive types: int, char, float, etc (like the 

corresponding types in C)

• Reference types: references of object (similar to the 

pointer of struct in C)

Arrays, String, … are directly supported by the language, 
however they are object types ultimately.
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Primitive Types
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Floating Point Number

Floating Point Number

true or false

a 16-bit Unicode character

- No unsigned type
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Primitive Types
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Floating Point Number

Floating Point Number

true or false

a 16-bit Unicode character

- Default values: 0, false, …
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Literals
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Variable Declarations
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• Initialized with default value:

int i;

• With initialization:

int i = 23;

• In the middle of a block as well:

int f(int i) {

int j;

…do something with i and j…

boolean jPositiv = (j >0);

…

}
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Arrays
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Similar as in C, but:

Always allocated dynamically!

Such as in C, it does not work!
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Arrays 2.
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In Java:

int f() {

int[] a;  //this is a reference to an array whose elements are int

a = new int[10]; //place for 10 integer value are allocated

a[2] = 3; 

…

}

Arrays are realized like object ���� int[] is a reference type
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Arrays 3.
Karoly.Bosa@jku.at

Number of elements in an Array:

a.length

a[0] is the first, a[a.length-1] is the last element

There is not Pointer-Aritmethic:

in C: a+1 is a pointer to the array from its 2. element

In Java: an independent reference to the array and index are 

needed
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Matrices/Multidimensional Arrays
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Allocation of Multidimensional Arrays
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A 5 times 5 Array/Matrix:

Or, as a shortcut:
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Strings
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Unicode Strings

Literal: “This is a row\nThis is another row”

Concatenation of Strings:

String a = “This is a row”;

String b = “This is another row”;

String twoRows = a + “\n” + b;

Addition of other types:

String s = “The answer is: “ + 42;

� The outcome will be: “The answer is: 42”
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More about Strings
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Strings are also reference types:

String a = “World”;

String b = a;

Here only the reference was copied (not the value)

The String objects never change after their creation:

a = “Hello ” + a;



48

More about Strings
Karoly.Bosa@jku.at

Strings are also reference types:

String a = “World”;

String b = a;

Here only the reference was copied (not the value)

The String objects never change after their creation:

a = “Hello ” + a;

• It creates a new string: “Hello World”



49

More about Strings
Karoly.Bosa@jku.at

Strings are also reference types:

String a = “World”;

String b = a;

Here only the reference was copied (not the value)

The String objects never change after their creation:

a = “Hello ” + a;

• It creates a new string: “Hello World”

• The reference of the new String is stored in a



50

More about Strings
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Strings are also reference types:

String a = “World”;

String b = a;

Here only the reference was copied (not the value)

The String objects never change after their creation:

a = “Hello ” + a;

• It creates a new string: “Hello World”

• The reference of the new string is stored in a

• b still refers to the old string
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Operators
Karoly.Bosa@jku.at

Operators are similar as in C:

• Arithmetik: +, -, *, /, %

• Bind of Variables: =, +=, -=, …

• Comparison: ==, !=, <, >, <=, >=

• Incrementing/Decrementing: ++, --

• Logical Operations: &&, ||, !

• Logical Operations on Bits: &, |, ^

• Conditional Structures: ? : 

• Object Operators: new, instanceof
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Control Structures: if-then-else
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Control Structures: switch
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Control Structures: while
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digitsum
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Control Structures: do-while
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Control Structures: for
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Control Structures: return
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Control Structures: break/continue
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Without label:
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Control Structures: break/continue
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With label:
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Static Methods
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So far there is not any object that was created by 
ourselves.

���� There is not any method belonging to such an object

The main program:

public static void main(String args[])

Our own static methods:

public static int myMethod(int i)

Calling from the main:

result = myMethod(23);

Global variables are static as well:

static int[] qu;
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.java files
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• Generally every class is defined in a .java file. 

• The name of the file has to correspond with the name of 
the class. For instance, the content of the file Exercise.java:

class Exercise {

static int counter;

…

static double f(int i) {

…

}

…

public static void main(String args[]) {

…

}

}
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Comments
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There are 3 kinds of the comments:

• Comment in one line: //

• Comment in more lines: /* … */

• .JavaDoc comment: /** … */
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Recommended to Read
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Reading and completing the course material from the 
online Java Tutorial:

http://download.oracle.com/javase/tutorial/java/index.html

• Object Oriented Concept

• Language Basics
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Exercise 2 Deadline: 02.04.2014
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Hallo World – Advanced Version

java Hallo

�Who is there?

java Hallo Tom

�Hallo Tom!

java Hallo Tom Tim

�Hallo Tom and Tim!

java Hallo Tracy Tom Tim          (Attention: Arbitrary many arguments)

�Hallo Tracy, Tom and Tim! 
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Exercise 3 Deadline: 02.04.2014
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Matrix Product of two matrices (4x5 and 5x4 at least)

• Matrices can be initialized from the source code.

• Output should be printed out in a “nice” matrix format 
on the screen.


