
1

Praktische
Softwaretechnologie

Károly Bósa

(Karoly.Bosa@jku.at)

Research Institute for Symbolic Computation

(RISC)

2

Literatures

• Xiaoping Jia, Object-Oriented Software
Development Using Java – Principles, Patterns,
and Frameworks, 2nd ed., Addison-Wesley, 2002.

Practical Programming Homework. More than 50

Euro

• Java Tutorial:
http://download.oracle.com/javase/tutorial/java/index.html

• Further books will be mentioned at the introduction

of each Topic

Karoly.Bosa@jku.at

3

Karoly.Bosa@jku.at

Introduction into the Object
Oriented Programming

4

Non-Structured Programming

• Global data

• Only one main program

• Program flow branching by command
GOTO

• E.g.: typical beginner BASIC program

Karoly.Bosa@jku.at

…

50 IF A<>0 THEN GOTO 100

…

100 PRINT…

5

(Block)Strucktured Programming

• The program flow is controlled by program
structures: if-then-else, while, etc.

• Global data

• Only one main program

• E.g.: a simple/beginner PASCAL program

Karoly.Bosa@jku.at

…

if a<>0 then begin

…

end;

else begin … end;

…

6

Procedural Programming

• The program code is wrapped into functional substructures

(procedures, functions)

• The data are given among the program structures as

arguments

• However the data are still global partially

• Accessing to the Global data is possible from every program

structure

• The definition of the data structures are separated from the

algorithmic program codes

• The contexts of the data structures and program structures

are ambiguous; difficult to understand and reuse

• Typical (advanced) PASCAL program; a C program in one

file

Karoly.Bosa@jku.at

7

Modular Programming

• The algorithms and their dependent data are wrapped
into modules

• The interfaces of the modules are well defined

• E.g.: Modula-2 and in C is also possible, in a C source
file:

static int i;

…

functions

Karoly.Bosa@jku.at

8

Objects
Karoly.Bosa@jku.at

Grady Booch, Object-Oriented Design with

Applications, Addison-Wesley,1991:

An object has state, behavior and identity.

9

Objects
Karoly.Bosa@jku.at

• State = Data

Grady Booch, Object-Oriented Design with

Applications, Addison-Wesley,1991:

An object has state, behavior and identity.

10

Objects

Grady Booch, Object-Oriented Design with

Applications, Addison-Wesley,1991:

An object has state, behavior and identity.

Karoly.Bosa@jku.at

• State = Data

• Behavior = Algorithms which use the data

11

Objects
Karoly.Bosa@jku.at

• State = Data

• Behavior = Algorithms which use the data

• Identity = Distinguishably from other objects

Grady Booch, Object-Oriented Design with

Applications, Addison-Wesley,1991:

An object has state, behavior and identity.

12

Object Based Programming
Karoly.Bosa@jku.at

• The global state of a program consists of (the states of)
numerous objects

• The objects interact with each other via messages

• These messages are realized as procedure/function calls,
e.g.:

• sending message “m” to object “o” = calling procedure “m”

of object “o”

• Procedure “m” is able to modify directly the state of the

objects “o” or to send another message to another object

13

An Example for Objects
Karoly.Bosa@jku.at

14

Encapsulation
Karoly.Bosa@jku.at

• Accessing to the field “squareContainer.qu” from outside

(e.g.: from function “main”) is not possible/desirable

• Accessing (changing/reading values) to the fields of an object

is done typically though designated access points (public

functions).

• Advantages of this:
-avoiding side effects,

-clear structures (storing the data and their algorithms

together),

-controlling the modification of the data, etc.

15

Object Oriented Programming
Karoly.Bosa@jku.at

• Typing: The objects belong to classes. Within a class each

object has

• the same data fields and

• the same behavior (same functions).

• Inheritance: A class may inherit the data and behavior of

(an)other class(es).

• Polymorphism: The same piece of program/function can

work on different kind of objects.

16

An example for Classes
Karoly.Bosa@jku.at

17

An Example for Inheritance
Karoly.Bosa@jku.at

18

An Example for Polymorphism
Karoly.Bosa@jku.at

// Allowed , Rectangle is subclass of Figure

// Allowed , circle is subclass of Figure

// Not Allowed (!!!)

19

Influence of Polymorphism for Behavior
Karoly.Bosa@jku.at

20

Dynamic/Late Binding 1.
Karoly.Bosa@jku.at

21

Dynamic/Late Binding 1.
Karoly.Bosa@jku.at

• T

22

Dynamic/Late Binding 2.
Karoly.Bosa@jku.at

23

Simula 67
Karoly.Bosa@jku.at

• It was mainly applied for simulations.

• It is an extension of Algol 60.

• Next to the standard types it uses classes and

inheritance.

• The methods/behaviors have not been bound strictly to

the objects yet.

• Practically it is used only in Europe.

Simula 67 was the first OO language. It was developed in

the years 60th in Oslo by Ole-Johan Dahl and Krysten

Nygaard.

24

Smalltalk
Karoly.Bosa@jku.at

The first “real/consequent” OO language. It was developed in

the years of 70s at the Xerox PARC by Alan Kay and others.

• The influence of the Simula

• Everything is an object

• Already a development tool with GUI

• It is still used at present

• It had a strong influence for many other OO languages

25

OO Expansions of other Prog. Languages
Karoly.Bosa@jku.at

26

Definiton of OO?
Karoly.Bosa@jku.at

There is not an accurate definition which is accepted by

everyone, some example on Ward’s Wiki:

27

Definition of Kirsten Nygaard
Karoly.Bosa@jku.at

Kristen Nygaard (1926-2002) was one of the developer of

Simula 67, which was the first OO language. His definition is:

28

Defintion of Alan Kay
Karoly.Bosa@jku.at

Alan Kay was one of the developer of Smalltalk, which is a very

successful OO language. He requires the following essential

elements for an OO language:

• Polymorphism

• Data encapsulation

• Inheritance

• Every type is an object type

• The object types compose a hierarchy with a single root

29

What is OO?
Karoly.Bosa@jku.at

• There is a lot of differences.

• But a lot of common issues among the OO language as
well.

• In this lecture we will focus on the Java language

30

Exercise I.

Karoly.Bosa@jku.at

31

Exercise I.
Karoly.Bosa@jku.at

• Installing of Java or Finding an Java installation on an
available Computer

• Writing a “Hello World” program with Text Editor

• Compiling the program from command line

• Executing the program from the command line

32

Exercise 1
Karoly.Bosa@jku.at

• Installing of Java or Finding an Java installation on an
available Computer

• Writing a “Hello World” program with Text Editor

• Compiling the program from command line

• Executing the program from the command line

• Not necessary to understand (yet) ;-)

• See the guidance for this exercise on the web page of the
lecture.

