Problems Solved:

41 | 42 | 43 | 44 | 45

Name:

Matrikel-Nr.:

Problem 41. Let $\Sigma = \{0, 1\}$ and let $L \subseteq \Sigma^*$ be the set of binary numbers divisible by 3, i.e.,

$$L = \{x_n \dots x_1 x_0 : 3 \text{ divides } \sum_{k=0}^n x_k 2^k\}.$$

(By convention, the empty string ε denotes the number 0 and so it is in L too.)

- 1. Design a Turing machine M with input alphabet Σ which recognizes L, halts on every input, and has (worst-case) time complexity T(n) = n. Write down your machine formally. (A picture is not needed.) *Hint:* Three states q_0, q_1, q_2 suffice. The machine is in state q_r if the bits read so far yield a binary number which leaves a remainder of r upon division by 3. The transition from one state to another represents a multiplication by 2 and the addition of 0 or 1.
- 2. Determine S(n), $\overline{T}(n)$ and $\overline{S}(n)$ for your Turing machine.
- 3. Is there some faster Turing machine that achieves $\overline{T}(n) < n$? (Justify your answer.)

Problem 42. Let T(n) be the number of multiplications carried out by the following Java program.

```
int a, b, i, product, max;
1
2
     max = 1;
3
      a = 0;
4
      while (a < n) {
5
        b = a;
6
        while (b <= n) {
7
          product = 1;
8
          i = a;
9
          while (i < b) {
10
            product = product * factors[i];
            i = i + 1; }
11
12
          if (product > max) { max = product; }
13
          b = b + 1; }
14
        a = a + 1; }
```

- 1. Determine T(n) exactly as a nested sum.
- 2. Determine T(n) asymptotically using Θ -Notation. In the derivation, you may use the asymptotic equation

$$\sum_{k=0}^{n} k^{m} = \Theta(n^{m+1}) \text{ for } n \to \infty$$

Berechenbarkeit und Komplexität, WS2013

for fixed $m \ge 0$ which follows from approximating the sum by an integral:

$$\sum_{k=0}^{n} k^{m} \simeq \int_{0}^{n} x^{m} \, dx = \frac{1}{m+1} n^{m+1} = \Theta(n^{m+1})$$

Problem 43. Let T(n) be total number of calls to tick() resulting from running P(n).

```
procedure P(n)

k = 0

while k < n do

tick()

P(k)

k = k + 1

end while

end procedure
```

- 1. Compute T(0), T(1), T(2), T(3), T(4).
- 2. Give a recurrence relation for T(n). (It is OK if your recurrence involves a sum.)
- 3. Give a recurrence relation for T(n) that does not involve a sum. (*Hint:* Use your recurrence relation (twice) in T(n+1) T(n).)
- 4. Solve your recurrence relation. (It is OK to just guess the solution as long as you prove that it satisfies the recurrence.)

Problem 44. Let T(n) be given by the recurrence relation

$$T(n) = 3T(|n/2|).$$

and the initial value T(1) = 1. Show that $T(n) = O(n^{\alpha})$ with $\alpha = \log_2(3)$. *Hint:* Define $P(n) : \iff T(n) \le n^{\alpha}$. Show that P(n) holds for all $n \ge 1$ by induction on n. It is not necessary to restrict your attention to powers of two.

Problem 45. Let T(n) be the total number of times that the instruction a[i,j] = a[i,j] + 1 is executed during the execution of P(n,0,0).

Berechenbarkeit und Komplexität, WS2013

- 1. Compute T(1), T(2) and T(4).
- 2. Give a recurrence relation for T(n).
- 3. Solve your recurrence relation for T(n) in the special case where $n = 2^m$ is a power of two.
- 4. Use the Master Theorem to determine asymptotic bounds for T(n).