Problems Solved:

41	42	43	44	45

Name:

Matrikel-Nr.:

Problem 41. Let $\Sigma=\{0,1\}$ and let $L \subseteq \Sigma^{*}$ be the set of binary numbers divisible by 3 , i.e.,

$$
L=\left\{x_{n} \ldots x_{1} x_{0}: 3 \text { divides } \sum_{k=0}^{n} x_{k} 2^{k}\right\} .
$$

(By convention, the empty string ε denotes the number 0 and so it is in L too.)

1. Design a Turing machine M with input alphabet Σ which recognizes L, halts on every input, and has (worst-case) time complexity $T(n)=n$. Write down your machine formally. (A picture is not needed.) Hint: Three states q_{0}, q_{1}, q_{2} suffice. The machine is in state q_{r} if the bits read so far yield a binary number which leaves a remainder of r upon division by 3 . The transition from one state to another represents a multiplication by 2 and the addition of 0 or 1 .
2. Determine $S(n), \bar{T}(n)$ and $\bar{S}(n)$ for your Turing machine.
3. Is there some faster Turing machine that achieves $\bar{T}(n)<n$? (Justify your answer.)

Problem 42. Let $T(n)$ be the number of multiplications carried out by the following Java program.

```
int a, b, i, product, max;
max = 1;
a = 0;
while ( a < n ) {
    b = a;
    while (b <= n) {
        product = 1;
        i = a;
        while (i < b) {
            product = product * factors[i];
            i = i + 1; }
        if (product > max) { max = product; }
        b = b + 1; }
    a = a + 1; }
```

1. Determine $T(n)$ exactly as a nested sum.
2. Determine $T(n)$ asymptotically using Θ-Notation. In the derivation, you may use the asymptotic equation

$$
\sum_{k=0}^{n} k^{m}=\Theta\left(n^{m+1}\right) \text { for } n \rightarrow \infty
$$

for fixed $m \geq 0$ which follows from approximating the sum by an integral:

$$
\sum_{k=0}^{n} k^{m} \simeq \int_{0}^{n} x^{m} d x=\frac{1}{m+1} n^{m+1}=\Theta\left(n^{m+1}\right)
$$

Problem 43. Let $T(n)$ be total number of calls to tick() resulting from running $P(n)$.
procedure $\mathrm{P}(\mathrm{n})$
$\mathrm{k}=0$
while $k<n$ do
tick()
P(k)
$\mathrm{k}=\mathrm{k}+1$
end while
end procedure

1. Compute $T(0), T(1), T(2), T(3), T(4)$.
2. Give a recurrence relation for $T(n)$. (It is OK if your recurrence involves a sum.)
3. Give a recurrence relation for $T(n)$ that does not involve a sum. (Hint: Use your recurrence relation (twice) in $T(n+1)-T(n)$.)
4. Solve your recurrence relation. (It is OK to just guess the solution as long as you prove that it satisfies the recurrence.)

Problem 44. Let $T(n)$ be given by the recurrence relation

$$
T(n)=3 T(\lfloor n / 2\rfloor)
$$

and the initial value $T(1)=1$. Show that $T(n)=O\left(n^{\alpha}\right)$ with $\alpha=\log _{2}(3)$. Hint: Define $P(n): \Longleftrightarrow T(n) \leq n^{\alpha}$. Show that $P(n)$ holds for all $n \geq 1$ by induction on n. It is not necessary to restrict your attention to powers of two.

Problem 45. Let $T(n)$ be the total number of times that the instruction $a[i, j]=a[i, j]+1$ is executed during the execution of $P(n, 0,0)$.

```
procedure P(n, x, y)
    if n >= 1 then
        for (i = x; i < x+n; i++)
            for (j = y; j < y+n; j++)
                a[i,j] = a[i,j] + 1
            h = floor( n / 2)
            P(h, x, y )
            P(h, x+h, y )
            P(h, x, y+h)
            P(h, x+h, y+h)
    end if
end procedure
```

1. Compute $T(1), T(2)$ and $T(4)$.
2. Give a recurrence relation for $T(n)$.
3. Solve your recurrence relation for $T(n)$ in the special case where $n=2^{m}$ is a power of two.
4. Use the Master Theorem to determine asymptotic bounds for $T(n)$.
