Problems Solved:

| 31 | 32 | 33 | 34 | 35

Name:

Matrikel-Nr.:

Problem 31. Let Σ be an alphabet and A be a set $(A \subseteq \Sigma^*)$. Let also A be semi-decidable, but not decidable. Prove that the complement of A is not decidable.

Problem 32. Let M_0, M_1, M_2, \ldots be a list of all Turing machines with alphabet $\Sigma = \{0, 1\}$. such that the function $i \mapsto \langle M_i \rangle$ is computable. Let $w_i = 01^{i}0$ for all natural numbers i. Let $L = \{w_i \mid i \in \mathbb{N} \text{ and } M_i \text{ accepts } w_i\}$ and $\overline{L} = \Sigma^* \setminus L$.

- (a) Is L recursively enumerable?
- (b) Is \overline{L} recursively enumerable?
- (c) Is L recursive?
- (d) Is \overline{L} recursive?

Justify your answers.

Problem 33. Let *L* be a finite language over an alphabet $\{0, 1\}$. Is the following problem

For a Turing maschine M it holds $L(M) \supseteq L$.

semi-decidable? Is it also decidable?

Problem 34. Which of the following problems are decidable? In each problem below, the input of the problem is the code $\langle M \rangle$ of a Turing machine M with input alphabet $\{0, 1\}$.

- 1. Is L(M) empty?
- 2. Is L(M) finite?
- 3. Is L(M) regular?
- 4. Is $L(M) \subseteq \{0, 1\}^*$?
- 5. Is L(M) not recursively enumerable?
- 6. Does M have an even number of states?
- **Problem 35.** (a) Given any Turing machine M, construct a grammar G with the following property:

 $L(G) \neq \emptyset \iff M$ halts on the empty input ϵ . (1)

The construction is supposed to be computable.

Hint: Encode reachable configurations

Berechenbarkeit und Komplexität, WS2013



of the Turing machine as the sententials forms

 $\#x_1x_2\ldots x_mqy_1y_2\ldots y_n\#$

of G. Simulate transitions of the Turing machine by productions of the grammar.

- (b) Is it decidable if a grammar G satisfies $L(G) \neq \emptyset$? (An instance of this decision problem is a grammar coded as a bit string.) Justify your answer.
- (c) Is it decidable if two grammars G_1 and G_2 describe the same language? (An instance of this decision problem is a bit string that encodes a pair (G_1, G_2) of grammars.) Justify your answer.

Berechenbarkeit und Komplexität, WS2013