Gruppe	Hemmecke (10:15)	Hemmecke (11:00)			Р	opov (11	:00))	
Name		Matrikel				SKZ			

Klausur 1 Berechenbarkeit und Komplexität 22. November 2013

Part 1 NFSM2013

Let N be the nondeterministic finite state machine

 $(\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \nu, \{q_0\}, \{q_1, q_4\}),$

whose transition function ν is given below.

1 no	Is $001000100101 \in L(N)$?
	A word $w \in L(N)$ with $ w > 1$ never ends with 101.
2 no	Is $L(N)$ finite?
3 no	Is $L(N) = L(r)$ for the regular expression $r = (0010)^*(01+0)$?
	Arden's lemma yields $r = (0010)^* 0(00 + 1 + \varepsilon)$?
4 yes 5 no	Let $L = \{ 01^n w \mid n \in \mathbb{N}, w \in \{0,1\}^* \setminus L(N) \}$. Is L a regular language? Is there a deterministic finite state machine M with less than 4 states such that $L(M) = L(N)$?
	The only words of $L(N)$ with less than 4 letters are 0, 01, and 000. All other words start with a finite repetition of the 4 letter word 0010. Obviously, a DFSM that is able to allow only 4-letter-repetitions (and not shorter repetitions) must have at least 4 states.
6 yes	Is there a deterministic Turing machine $T = (Q, \Gamma, \sqcup, \{0, 1\}, \delta, q, F)$ with $L(T) = L(N)^*$?
	We have $L(N)^* = L(r)$ for $r = ((0010)^*0(00 + 1 + \varepsilon))^*$. Hence, $L(N)^*$ is regular, and thus also recursively enumerable.
7 no	Does for each Turing machine H (that halts on every input) exists a non- deterministic finite state machine F such that $L(F) = L(N) \cap L(H)$?
	For example, let H be such that $L(H) = \left\{ (0010)^{n^2} 0(00 + 1 + \varepsilon) \mid n \in \mathbb{N} \right\}$. Then $L(N) \cap L(H) = L(H)$. However, $L(H)$ is not regular.
P Le	art 2 Pumping2013 et

$$L_{1} = \left\{ a^{(m^{2})}b^{n} \mid m, n \in \mathbb{N} \right\},\$$

$$L_{2} = \left\{ a^{n}b^{n} \mid n \in \mathbb{N}, n < 1000 \right\}.$$

8 no	Is there a regular expression r such that $L(r) = L_1$?
9 yes	Is there a deterministic finite state machine M such that $L(M) = \overline{L_2} := \{a, b\}^* \setminus L_2$?
	L_2 is regular, i.e., its complement $\overline{L_2}$ is also regular.
10 yes	Is there an enumerator Turing machine G such that $Gen(G) = L_1$?
11 yes	Is there a Turing machine M such that $L(M) = L_1 \cup L_2$?
12 yes	Is there an deterministic finite state machine D such that $L(D) = L_1 \cap L_2$?

The language $L_1 \cap L_2$ is finite and thus regular.

Part 3 WhileLoop2013

Let T and H be Turing machines with the property that H halts on every input. Furthermore assume that T and H compute functions $t, h : \mathbb{N} \to \mathbb{N}$, respectively. (We assume that a natural number n is encoded on the tape as a string of n letters 0.)

13 yes	Is there a WHILE-program that computes t?
	Every Turing machine can be simulated by a while program.
14 no	Is there a LOOP-programm that computes h?
	The Ackermann function ack is a total function that is not primitive recursive. Hence, if H is the Turing machine that computes $h(n) = \operatorname{ack}(n, n)$, then we can assume that H holds on every input. However, since h is not primitive recursive, there cannot be a corresponding LOOP-program.
15 yes 16 yes	Is t a recursive function? Is every primitive recursive function computable by a LOOP-program?
Pa Le	art 4 <u>Recursive2013</u> et $f : \mathbb{N} \to \mathbb{N}$ be a recursive function that is defined on $D = \text{domain}(f) \subseteq \mathbb{N}$ and define another function $d : \mathbb{N} \to \mathbb{N}$ by
	$d(n) = \begin{cases} f(n) & \text{if } n \in D\\ 0 & \text{otherwise.} \end{cases} $ (1)

17 no	Can it be concluded that d is LOOP-computable?
	Not every total function is primitive recursive. The function $f(n) = d(n) = \operatorname{ack}(n, n)$ is a total function that is not primitive recursive. Only primitive recursive functions are LOOP-computable.
18 yes	Does there exist an enumerator Turing machine M such that $Gen(M) = \{ 0^{f(n)} n \in D \}$?
19 yes	Can it be concluded that the language $L = \{ 0^n n \in D \}$ is recursively enumerable?
	f is a recursive function iff f is Turing computable iff its graph is recursively enumerable. Thus one can construct an enumerator G that generates simply the first component of the graph of f , i.e. Gen(G) = D. But that would mean D is recursively enumerable.

Part 5 *TM2013*

Let $M = (Q, \Gamma, \sqcup, \Sigma, \delta, q_0, F)$ be a Turing machine with $Q = \{q_0, q_1, q_2\}, \Sigma = \{0, 1\}, \Gamma = \{0, 1, \sqcup\}, F = \{q_0\}$. The transition function

$$\delta: Q \times \Gamma \to_P Q \times \Gamma \times \{L, R\}$$

is given by the following table.

20 no	Is $q_0110 \vdash 1q_010 \vdash 11q_00 \vdash 110q_1 \sqcup \vdash 1100q_0 \sqcup a \ computation \ of \ M?$
	M always writes a 0, so the computation rather looks like $q_0 110 \vdash 0q_0 10 \vdash 00q_0 0 \vdash 000q_1 \sqcup \vdash 0000q_0 \sqcup$.
21 no	Is $001 \in L(M)$?
	The machine M does not terminate. It rather loops between state q_0 and state q_1 and moves its head just between the two initial 0's.
22 yes	Is $L(M)$ a recursively enumerable language?
23 yes] Is there a Turing machine H that halts on every input with $L(H) = L(M)$.
	If the machine M hits 00, it jumps into a loop and the corresponding word will never be accepted. That's the only case where it will not terminate. So, one can simply change the transition function δ of M in

terminate. So, one can simply change the transition function δ of M in one single place, namely we let $\delta(q_1, 0) = (q_2, 0, R)$ and take this modified Turing machine as H. H always moves its head to the right and must thus eventually (since the input is finite) hit a \sqcup . From there it will be at most one step to termination.

Part 6 *Open2013*

 $((2 \ points))$

Let $N = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite state machine with $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{0, 1\}, S = \{q_0\}, F = \{q_0, q_3\}, and transition function <math>\delta$ as given below.

1. Let X_i denote the regular expression for the language accepted by N when starting in state q_i .

Write down an equation system for X_0, \ldots, X_3 .

2. Give a regular expression r such that L(r) = L(N) (you may apply Arden's Lemma to the result of 1).

$$X_{0} = 1X_{1} + (0+1)X_{2} + \varepsilon$$

$$X_{1} = 0X_{2}$$

$$X_{2} = 1X_{3}$$

$$X_{3} = 1X_{1} + \varepsilon$$

$$r = ((0+1) + 10)(110)^{*}1 + \varepsilon$$