| Gruppe | Hemmecke (10:15) Hemmecke (11:00) | Popov (11:00) | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Name | | Matrikel | | | | | | SKZ | |

Klausur 1
 Berechenbarkeit und Komplexität

22. November 2013

Part 1 NFSM2013
Let N be the nondeterministic finite state machine

$$
\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\{0,1\}, \nu,\left\{q_{0}\right\},\left\{q_{1}, q_{4}\right\}\right),
$$

whose transition function ν is given below.

$\mathbf{1}$		no \quad Is $001000100101 \in L(N) ?$

A word $w \in L(N)$ with $|w|>1$ never ends with 101.

$\mathbf{2}$		no
$\mathbf{3}$		no
$\mathbf{4}$		
$\mathbf{4}$	yes	
$\mathbf{5}$		no

Is $L(N)$ finite?
Is $L(N)=L(r)$ for the regular expression $r=(0010)^{*}(01+0)$?
Arden's lemma yields $r=(0010)^{*} 0(00+1+\varepsilon)$?
Let $L=\left\{01^{n} w \mid n \in \mathbb{N}, w \in\{0,1\}^{*} \backslash L(N)\right\}$. Is L a regular language?
Is there a deterministic finite state machine M with less than 4 states such that $L(M)=L(N)$?

The only words of $L(N)$ with less than 4 letters are 0,01 , and 000 . All other words start with a finite repetition of the 4 letter word 0010.
Obviously, a DFSM that is able to allow only 4-letter-repetitions (and not shorter repetitions) must have at least 4 states.
 $L(T)=L(N)^{*}$?

We have $L(N)^{*}=L(r)$ for $r=\left((0010)^{*} 0(00+1+\varepsilon)\right)^{*}$. Hence, $L(N)^{*}$ is regular, and thus also recursively enumerable.

Does for each Turing machine H (that halts on every input) exists a nondeterministic finite state machine F such that $L(F)=L(N) \cap L(H)$?

For example, let H be such that $L(H)=\left\{(0010)^{n^{2}} 0(00+1+\varepsilon) \mid n \in \mathbb{N}\right\}$. Then $L(N) \cap L(H)=L(H)$.
However, $L(H)$ is not regular.

Part 2 Pumping2013
Let

$$
\begin{aligned}
& L_{1}=\left\{a^{\left(m^{2}\right)} b^{n} \mid m, n \in \mathbb{N}\right\} \\
& L_{2}=\left\{a^{n} b^{n} \mid n \in \mathbb{N}, n<1000\right\}
\end{aligned}
$$

$\mathbf{8}$		no
$\mathbf{9}$	yes	

Is there a regular expression r such that $L(r)=L_{1}$?
Is there a deterministic finite state machine M such that $L(M)=\overline{L_{2}}:=$ $\{a, b\}^{*} \backslash L_{2}$?
L_{2} is regular, i.e., its complement $\overline{L_{2}}$ is also regular.

10	yes	
11	yes	
$\mathbf{1 2}$	yes	

Is there an enumerator Turing machine G such that $\operatorname{Gen}(G)=L_{1}$?
Is there a Turing machine M such that $L(M)=L_{1} \cup L_{2}$?
Is there an deterministic finite state machine D such that $L(D)=L_{1} \cap L_{2}$?
The language $L_{1} \cap L_{2}$ is finite and thus regular.

Part $3 \quad$ WhileLoop2013
Let T and H be Turing machines with the property that H halts on every input. Furtermore assume that T and H compute functions $t, h: \mathbb{N} \rightarrow \mathbb{N}$, respectively. (We assume that a natural number n is encoded on the tape as a string of n letters 0.)

Every Turing machine can be simulated by a while program.

| 14 | no \quad Is there a LOOP-programm that computes h ? |
| :--- | :--- | :--- |

The Ackermann function ack is a total function that is not primitive recursive. Hence, if H is the Turing machine that computes $h(n)=\operatorname{ack}(\mathrm{n}, \mathrm{n})$, then we can assume that H holds on every input. However, since h is not primitive recursive, there cannot be a corresponding LOOP-program.

15	yes	
16	yes	

Is t a recursive function?

Is every primitive recursive function computable by a LOOP-program?
Part 4 Recursive2013
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a recursive function that is defined on $D=\operatorname{domain}(f) \subseteq \mathbb{N}$ and define another function $d: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
d(n)= \begin{cases}f(n) & \text { if } n \in D \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

$\mathbf{1 7}$		no \quad Can it be concluded that d is LOOP-computable?

Not every total function is primitive recursive. The function $f(n)=d(n)=\operatorname{ack}(n, n)$ is a total function that is not primitive recursive. Only primitive recursive functions are LOOP-computable.

| $\mathbf{1 8}$ | yes | \quad Does there exist an enumerator Turing machine M such that $\operatorname{Gen}(M)=$ |
| :--- | :--- | :--- | $\left\{0^{f(n)} \mid n \in D\right\}$?

 enumerable?
f is a recursive function iff f is Turing computable iff its graph is recursively enumerable. Thus one can construct an enumerator G that generates simply the first component of the graph of f, i.e.
$\operatorname{Gen}(G)=D$. But that would mean D is recursively enumerable.

Part 5 TM2013
Let $M=\left(Q, \Gamma, \sqcup, \Sigma, \delta, q_{0}, F\right)$ be a Turing machine with $Q=\left\{q_{0}, q_{1}, q_{2}\right\}, \Sigma=$ $\{0,1\}, \Gamma=\{0,1, \sqcup\}, F=\left\{q_{0}\right\}$. The transition function

$$
\delta: Q \times \Gamma \rightarrow_{P} Q \times \Gamma \times\{L, R\}
$$

is given by the following table.

δ	0	1	\sqcup
q_{0}	$\left(q_{1}, 0, R\right)$	$\left(q_{0}, 0, R\right)$	-
q_{1}	$\left(q_{0}, 0, L\right)$	$\left(q_{2}, 0, R\right)$	$\left(q_{0}, 0, R\right)$
q_{2}	-	-	-

| $\mathbf{2 0}$ | | no \quad Is $q_{0} 110 \vdash 1 q_{0} 10 \vdash 11 q_{0} 0 \vdash 110 q_{1} \sqcup \vdash 1100 q_{0} \sqcup$ a computation of M ? |
| :--- | :--- | :--- | :--- |

M always writes a 0 , so the computation rather looks like $q_{0} 110 \vdash 0 q_{0} 10 \vdash 00 q_{0} 0 \vdash 000 q_{1} \sqcup \vdash 0000 q_{0} \sqcup$.

$\mathbf{2 1}$		no \quad Is $001 \in L(M)$?

The machine M does not terminate. It rather loops between state q_{0} and state q_{1} and moves its head just between the two initial 0 's.

$\mathbf{2 2}$	yes	
$\mathbf{2 3}$	yes	

Is $L(M)$ a recursively enumerable language?
Is there a Turing machine H that halts on every input with $L(H)=L(M)$.
If the machine M hits 00 , it jumps into a loop and the corresponding word will never be accepted. That's the only case where it will not terminate. So, one can simply change the transition function δ of M in one single place, namely we let $\delta\left(q_{1}, 0\right)=\left(q_{2}, 0, R\right)$ and take this modified Turing machine as H. H always moves its head to the right and must thus eventually (since the input is finite) hit a \sqcup. From there it will be at most one step to termination.

Part 6 Open2013
((2 points))
Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a nondeterministic finite state machine with $Q=$ $\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Sigma=\{0,1\}, S=\left\{q_{0}\right\}, F=\left\{q_{0}, q_{3}\right\}$, and transition function δ as given below.

1. Let X_{i} denote the regular expression for the language accepted by N when starting in state q_{i}.
Write down an equation system for X_{0}, \ldots, X_{3}.
2. Give a regular expression r such that $L(r)=L(N)$ (you may apply Arden's Lemma to the result of 1).

$$
\begin{aligned}
X_{0} & =1 X_{1}+(0+1) X_{2}+\varepsilon \\
X_{1} & =0 X_{2} \\
X_{2} & =1 X_{3} \\
X_{3} & =1 X_{1}+\varepsilon \\
r & =((0+1)+10)(110)^{*} 1+\varepsilon
\end{aligned}
$$

